Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 261: 122012, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38968737

RESUMEN

The complex hydrological conditions caused by the backwater effect at the confluence inevitably modify the geochemical processes of elements. However, there is still a lack of comprehensive understanding regarding the precise transformation mechanisms of nutrients in large river systems. This study aimed to investigate the hydrodynamic characteristics and their impact on phosphorus transfer in the lower Han River, which is influenced by backwater from the Yangtze River (the largest river in China). By establishing a hydrodynamic-water quality model, we have determined that the discharge ratio (the ratio of flow between the Han River discharge and the Yangtze River discharge) can be utilized as a representative indicator of the backwater effect from the Yangtze River on the Han River. Three distinct patterns were identified in this study: mixing, backwater, and intrusion. The corresponding discharge ratio values were categorized as >0.08, 0.01∼0.08, and <0.01 respectively. Additionally, the extent of the backwater zone was determined, revealing that the length of the backwater zone increased from 50 km (XG) to 100 km (FS) as the discharge ratio decreased from 0.08 to 0.01. Furthermore, it was observed that the water level at the confluence rose from 2.52 m to 6.83 m in accordance with these changes in discharge ratio values. The migration pattern of phosphorus primarily involved the settling and retention of particulate phosphorus, particularly the labile particulate organic phosphorus (LOP) and dissolved organic phosphorus (DOP). When the confluent patterns became the intrusion pattern, the backwater zone expanded to 150 m (XT), causing a 10.40 m increase in water level at the confluence. An intrusion zone formed, and its phosphorus concentrations were same as Yangtze River's. Above the intrusion area, a backwater region formed and its concentrations of LOP and DOP decreased, while the concentration of PO43- increased due to the release from resuspended particles. This release was induced by higher velocity of bottom water brought about by the water exchange of two rivers. The discharge ratio of 0.01-0.08 resulted in the sedimentation of LOP and DOP, causing the lower Han River to act as a "sink" for phosphorus, potentially exacerbating phosphorus pollution. Higher discharge ratios in spring led to phosphorus release from sediment, increasing dissolved phosphorus concentrations and raising the risk of algal blooms in the lower Han River. These findings have significant implications for larger rivers worldwide and provide insights into strategies for ecological management and prevention of algal blooms.


Asunto(s)
Fósforo , Ríos , Fósforo/análisis , Ríos/química , China , Movimientos del Agua , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Hidrodinámica , Calidad del Agua
2.
Sci Total Environ ; 806(Pt 1): 150247, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562762

RESUMEN

Observations of volatile organic compounds (VOCs) are a prerequisite for evaluating the effectiveness of government efforts targeting VOC pollution. Here, based on the one-year online VOC measurement in 2018 in Beijing, systematic analyses and model simulation were conducted to illuminate VOC characteristics, emission sources, regional hotspots and behaviours in response to O3 formation. The observed mean VOC concentration in 2018 was 29.12 ± 17.64 ppbv declined distinctly compared to that in 2015 and 2016. Vehicle exhaust (39.95%), natural gas/liquefied petroleum gas (22.04%) and industrial sources (20.64%) were the main contributors to VOCs in Beijing. Regional transport, mainly from the south-south-east (SSE) and south-south-west (SSW), quantitatively contributed 36.65%-55.06% to VOCs based on our developed method. O3 sensitivity tended to be in the transition regime in summer identified by ground-based and satellite observations. Strong solar radiation along with high temperature and low humidity aggravated O3 pollution that was further intensified by regional transport from southern polluted regions. The model simulation determined that turning off CH3CHO related reactions brought about the most predominantly short-term and long-run O3 reduction, indicating that control policies in VOC species should be tailored, instead of one-size-fits-all. Overall, region-collaborated and active VOC-species-focused strategies on VOC controls are imperative.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Beijing , China , Monitoreo del Ambiente , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis
3.
Huan Jing Ke Xue ; 42(9): 4211-4221, 2021 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-34414719

RESUMEN

Hanjiang River is the main water source and influence area of the Middle Route of the South to North Water Transfer Project. In recent years, the water quality and ecological environment in the middle and lower reaches of the Hanjiang River has become seriously degraded and water blooms occur frequently. Scientific identification of the temporal and spatial variations in water environment quality (and the main driving factors) has become an important management requirement for optimizing the upstream water transfer project. The temporal and spatial variations and influencing factors of water quality in the Hanjiang River basin were systematically analyzed, based on multi-source data and using the Daniel trend test, Mann Kendall test, K-means cluster analysis, dissimilarity analysis, and redundancy analysis. Results showed that: ① in recent years, the main stream of the Hanjiang River had generally good water quality, which was generally classified as class Ⅱ of GB 3838-2002, while the water quality of some sections in the middle and lower reaches was classified as class Ⅲ. However, the total phosphorus (TP) and total nitrogen (TN) load was relatively high, with 10 stations in the Hanjiang River basin showing averaged concentrations of 0.028-0.263 mg·L-1 and 0.630-1.852 mg·L-1, respectively, during 2014-2018. ② From 2004 to 2018, TP and TN at Zongguan station did not show significant variation, and other water quality indexes did not exhibit any regular patterns. The concentrations of TN, NH4+-N, and BOD5 in the dry season were higher than those in the wet season. In the wet season. the permanganate index showed different variation patterns, while TP concentration did not decrease significantly. ③ Different sections showed obvious differences in the variation of water quality indexes. However, the ten stations can be clustered into three categories: the upstream stations showed the best water quality, followed by the middle reaches, and the downstream stations showed the worst. The water quality at Xiaohe station improved significantly over the study period, which may be related to protection measures implemented in recent years, such as source control, emission reduction, and removal of aquaculture. ④ Water discharge and temperature were important factors affecting the water quality of the three regions in Hanjiang River. According to redundancy analysis, the contribution of discharge to water quality in the upstream and downstream areas was much larger, while the contribution of water temperature was greatest in the middle reaches of the river.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Nitrógeno/análisis , Fósforo/análisis , Ríos
4.
J Environ Sci (China) ; 69: 141-154, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29941250

RESUMEN

Characteristics of two serious air pollution episodes (9-15 January, as the winter case; and 30 June to 1 July, as the summer case), which occurred in Beijing in 2013 were investigated and compared using multi-method observations and numerical simulations. During these two air pollution episodes, PM2.5 concentrations varied significantly within Beijing, with PM2.5 concentrations in southern parts of Beijing being significantly higher than in northern areas. Typically, heavy air pollution episodes begin in the southern parts and disperse towards the northern parts of Beijing. Clearly, synoptic patterns and the stability of atmospheric circulation patterns were the main factors controlling air pollution in Beijing. During the winter case, a warm center above 900hPa occurred over Beijing. Meanwhile, in the summer case, although there was only a weak inversion, the convective inhibition energy was strong (over 200J/kG). This clearly influenced the duration of the air pollution event. Except for the local accumulation and secondary atmospheric reactions in both cases, regional straw burnings contributed a lot to the PM2.5 concentrations in summer case. Using the CAMx model, we established that regional transport contributed almost 59% to the PM2.5 averaged concentration in Beijing in the winter case, but only 31% in the summer case. Thus, the winter case was a typical regional air pollution episode, while the summer case resulted from local accumulation straw burnings transportation and strong secondary atmospheric reactions. Given that air pollution is a regional problem in China, consistent and simultaneous implementation of regional prevention and control strategies is necessary to improve regional air quality.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente , Material Particulado/análisis , Beijing , Estaciones del Año
5.
Huan Jing Ke Xue ; 37(8): 2847-2854, 2016 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-29964707

RESUMEN

Based on the hourly O3 monitoring data from 2004 to 2015 of Beijing, a comprehensive discussion on the characteristics of O3 concentration at a background station Dingling in Beijing was conducted. The results showed that the annual concentration of O31h was increasing with a growth rate of 4.40 µg·m-3 while the annual concentration of O38h was decreasing with annual average rates of -1.0 µg·m-3 and -1.5 µg·m-3 from May to October in 2004 and 2015. Over the past 3 years, number of O38h severe pollution days increased significantly and the situation of O3 pollution in Beijing became more serious. O3 concentration reached its peak in June in a year and its diurnal peak concentration occurred at about 15:00-18:00 at Dingling station which was 101-1.56 times larger than that in the urban center of Beijing. In different years, the ozone peak concentration at Dingling Station was 1h later than that in the urban center from May to October in diurnal variation and the difference of peak concentration was significantly reduced in recent years, which on the one hand may be related to regional ozone pollution, on the other hand may be related to the expansion of Beijing's urbanization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA