Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Int Med Res ; 52(5): 3000605241241000, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38749910

RESUMEN

Ileostomy diverts the flow of feces, which can result in malnutrition in the distal part of the intestine. The diversity of the gut microbiota consequently decreases, ultimately leading to intestinal dysbiosis and dysfunction. This condition can readily result in diversion colitis (DC). Potential treatment strategies include interventions targeting the gut microbiota. In this case study, we effectively treated a patient with severe DC by ileostomy and allogeneic fecal microbiota transplantation (FMT). A 69-year-old man presented with a perforated malignant tumor in the descending colon and an iliac abscess. He underwent laparoscopic radical sigmoid colon tumor resection and prophylactic ileostomy. Follow-up colonoscopy 3 months postoperatively revealed diffuse intestinal mucosal congestion and edema along with granular inflammatory follicular hyperplasia, leading to a diagnosis of severe DC. After two rounds of allogeneic FMT, both the intestinal mucosal bleeding and edema significantly improved, as did the diversity of the gut microbiota. The positive outcome of allogeneic FMT in this case highlights the potential advantages that this procedure can offer patients with DC. However, few studies have focused on allogeneic FMT, and more in-depth research is needed to gain a better understanding.


Asunto(s)
Colitis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Ileostomía , Humanos , Masculino , Anciano , Trasplante de Microbiota Fecal/métodos , Colitis/microbiología , Colitis/terapia , Trasplante Homólogo/métodos , Resultado del Tratamiento , Colonoscopía
2.
NMR Biomed ; 36(10): e4985, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37283179

RESUMEN

Metabolically healthy or unhealthy obesity is closely related to metabolic syndrome (MetS). To validate a more accurate diagnostic method for obesity that reflects the risk of metabolic disorders in a pre-clinical mouse model, C57BL/6J mice were fed high-sucrose-high-fat and chow diets for 12 weeks to induce obesity. MRI was performed and analysed by chemical shift-encoded fat-water separation based on the transition region extraction method. Abdominal fat was divided into upper and lower abdominal regions at the horizontal lower border of the liver. Blood samples were collected, and the glucose level, lipid profile, liver function, HbA1c and insulin were tested. k-means clustering and stepwise logistic regression were applied to validate the diagnosis of hyperglycaemia, dyslipidaemia and MetS, and to ascertain the predictive effect of MRI-derived parameters to the metabolic disorders. Pearson or Spearman correlation was used to assess the relationship between MRI-derived parameters and metabolic traits. The receiver-operating characteristic curve was used to evaluate the diagnostic effect of each logistic regression model. A two-sided p value less than 0.05 was considered to indicate statistical significance for all tests. We made the precise diagnosis of obesity, dyslipidaemia, hyperglycaemia and MetS in mice. In all, 14 mice could be diagnosed as having MetS, and the levels of body weight, HbA1c, triglyceride, total cholesterol and low-density lipoprotein cholesterol were significantly higher than in the normal group. Upper abdominal fat better predicted dyslipidaemia (odds ratio, OR = 2.673; area under the receiver-operating characteristic curve, AUCROC = 0.9153) and hyperglycaemia (OR = 2.456; AUCROC = 0.9454), and the abdominal visceral adipose tissue (VAT) was better for predicting MetS risk (OR = 1.187; AUCROC = 0.9619). We identified the predictive effect of fat volume and distribution in dyslipidaemia, hyperglycaemia and MetS. The upper abdominal fat played a better predictive role for the risk of dyslipidaemia and hyperglycaemia, and the abdominal VAT played a better predictive role for the risk of MetS.


Asunto(s)
Dislipidemias , Hiperglucemia , Síndrome Metabólico , Ratones , Animales , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/metabolismo , Hiperglucemia/metabolismo , Hemoglobina Glucada , Ratones Endogámicos C57BL , Obesidad/metabolismo , Grasa Intraabdominal/diagnóstico por imagen , Colesterol , Dislipidemias/metabolismo
3.
J Hepatol ; 73(2): 383-393, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32147363

RESUMEN

BACKGROUND & AIMS: Circulating peptides and G protein-coupled receptors (GPCRs) have gained much attention because of their biofunctions in metabolic disorders including obesity and non-alcoholic fatty liver disease (NAFLD). Herein, we aimed to characterize the role and therapeutic potential of a newly identified peptide hormone in NAFLD. METHODS: Using bioinformatics, we identified a murine circulating pentadecapeptide flanked by potential convertase cleavage sites of osteocalcin (OCN), which we named 'metabolitin (MTL)'. We used ligand-receptor binding, receptor internalization, bioluminescence resonance energy transfer and Nano isothermal titration calorimetry assays to study the binding relationship between MTL and GPRC6A. For in vivo biological studies, wild-type mice kept on a high-fat diet (HFD) were injected or gavaged with MTL to study its function in NAFLD. RESULTS: We confirmed that MTL binds to GPRC6A and OCN interacts with GPRC6A using in vitro biological studies. Both intraperitoneal and oral administration of MTL greatly improved NAFLD and insulin resistance in a mouse model. Interacting with GPRC6A expressed in intestines, MTL can significantly inhibit intestinal neurotensin secretion, which in turn inhibits triglyceride but not cholesterol gut absorption, mediated by the 5'AMP-activated protein kinase pathway. In addition, glucagon like peptide-1 secretion was induced by MTL treatment. CONCLUSIONS: Oral or intraperitoneal MTL significantly improves the symptoms of NAFLD by inhibiting lipid absorption and insulin resistance. MTL could be a potential therapeutic candidate for the treatment of NAFLD. LAY SUMMARY: A novel murine peptide hormone, herein named 'metabolitin', inhibits fatty acid absorption and improves systemic insulin resistance in a murine model of obesity and non-alcoholic fatty liver disease. Thus, metabolitin has therapeutic potential for the treatment of patients with non-alcoholic fatty liver disease.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Absorción Intestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico , Hormonas Peptídicas , Receptores Acoplados a Proteínas G/metabolismo , Triglicéridos/metabolismo , Animales , Grasas de la Dieta/metabolismo , Modelos Animales de Enfermedad , Hipolipemiantes/metabolismo , Hipolipemiantes/farmacología , Resistencia a la Insulina , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Osteocalcina/metabolismo , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/farmacología , Transducción de Señal , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...