Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(31): 43712-43730, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38907821

RESUMEN

To control the diffusion of high concentrations of coal dust during tunnel boring and minimize the threat to the life and health of coal miners, theoretical analysis, numerical simulations, and field measurements were combined in this study. First, computational fluid dynamic simulation software was used to simulate the generation of dust particles and their transport pattern in the tunnel. Subsequently, an innovative orthogonal test was performed to study the effect of four ventilation parameters [the pressure airflow rate (Q), distance between the air duct center and heading face (LA), distance between the air duct center and tunnel floor (LB), and distance between the air duct center and nearest coal wall (LC)] on dust diffusion. According to the orthogonal test results, the optimal ventilation parameters for effective dust control are as follows: Q = 1400 m3/min, LA = 7 m, LB = 2.8 m, and LC = 1 m. The optimized set of ventilation parameters was applied to the Wangpo 3206 working face. The results show that dust diffusion in the tunnel was effectively controlled and that the air quality was sufficiently improved.


Asunto(s)
Carbón Mineral , Polvo , Ventilación , Contaminación del Aire/prevención & control , Hidrodinámica , Simulación por Computador , Minas de Carbón , Humanos
2.
Sci Total Environ ; 928: 172428, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38615765

RESUMEN

The increasing level of mechanization in coal mining means more dust and gas are generated during excavation operations in tunnels. The high concentrations of dust and gas severely affect production efficiency and the physical and mental health of workers. Here, Ansys Fluent simulations were performed to derive the spatiotemporal evolution of coupled airflow-dust-gas diffusion in a low-gas excavation face. The aim was to optimize pollution control by determining the optimal duct distance, L, from the working face in the excavation tunnel. Our results showed that the airflow field affects the coupled diffusion and transport of dust and gas. According to a comparison of the effects of different duct distances from the working face, when L = 6 m, the average dust concentration in the tunnel is low (257.6 mg/m3), and the average gas concentration in the tunnel is 0.28 %, which does not exceed the safety limit. Accordingly, the optimal distance of the duct for pollution control is 6 m. The results of field measurements supported the validity of the simulation. Our findings can be used to improve the air quality in tunnels, thereby keeping miners safe and the working area clean.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA