Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(19): 25581-25588, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708910

RESUMEN

Diamond has become a promising candidate for high-power devices based on its ultrawide bandgap and excellent thermoelectric properties, where an appropriate gate dielectric has been a bottleneck hindering the development of diamond devices. Herein, we have systematically investigated the structural arrangement and electronic properties of diamond/high-κ oxide (HfO2, ZrO2) heterojunctions by first-principles calculations with a SiO2 interlayer. Charge analysis reveals that the C-Si bonding interface attracts a large amount of charge concentrated at the diamond interface, indicating the potential for the formation of a 2D hole gas (2DHG). The diamond/HfO2 and diamond/ZrO2 heterostructures exhibit similar "Type II" band alignments with VBOs of 2.47 and 2.21 eV, respectively, which is consistent with experimental predictions. The introduction of a SiO2 dielectric layer into the diamond/SiO2/high-κ stacks exhibits the typical "Type I″ straddling band offsets (BOs). In addition, the wide bandgap SiO2 interlayer keeps the valence band maximum (VBM) and conduction band minimum (CBM) in the stacks away from those of diamond, effectively confining the electrons and holes in MOS devices. This work exhibits the potential of SiO2/high-κ oxide gate dielectrics for diamond devices and provides theoretical insights into the rational design of high-quality gate dielectrics for diamond-based MOS device applications.

2.
Micromachines (Basel) ; 13(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35457849

RESUMEN

The rapid development of micro/nano systems promotes the progress of micro energy storage devices. As one of the most significant representatives of micro energy storage devices, micro hydrogen fuel cells were initially studied by many laboratories and companies. However, hydrogen storage problems have restricted its further commercialization. The γ-graphdiyne (γ-GDY) has broad application prospects in the fields of energy storage and gas adsorption due to its unique structure with rigid nano-network and numerous uniform pores. However, the existence of various defects in γ-GDY caused varying degrees of influence on gas adsorption performance. In this study, Lithium (Li) was added into the intrinsic γ-GDY and vacancy defect γ-GDY (γ-VGDY) to obtain the Li-GDY and Li-VGDY, respectively. The first-principles calculation method was applied and the hydrogen storage performances of them were analysed. The results indicated that the best adsorption point of intrinsic γ-GDY is H2 point, which located at the centre of a large triangular hole of an acetylene chain. With large capacity hydrogen storage, doping Li atom could improve the hydrogen adsorption property of intrinsic γ-GDY; meanwhile, vacancy defect inspires the hydrogen storage performance further of Li-VGDY. The mass hydrogen storage density for Li2H56-GDY and Li2H56-VGDY model were 13.02% and 14.66%, respectively. Moreover, the Li2H56-GDY and Li2H56-VGDY model had same volumetric storage density, with values that could achieve 5.22 × 104 kg/m3.

3.
Recent Pat Nanotechnol ; 14(4): 294-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32525786

RESUMEN

BACKGROUND: Graphdiyne has a unique pi-conjugated structure, perfect pore distribution and adjustable electronic properties of sp2, sp hybrid planar framework. Due to the presence of acetylenic bonds, it has more excellent properties compared to grapheme, such as a unique structure-dependent Dirac cone, abundant carbon bonds and a large bandgap. As one of the important raw materials for nanodevices, it is extremely important to study the thermal properties of graphdiyne nanoribbon. OBJECTIVE: This paper mainly introduces and discusses recent academic research and patents on the preparation methods and thermal conductivity of graphdiyne nanoribbons. Besides, the applications in engineering and vacancy defects in the preparation process of graphdiyne are described. METHODS: Firstly, taking thermal conductivity as an index, the thermal conductivity of graphdiyne with various vacancy defects is discussed from the aspects of length, defect location and defect type. In addition, the graphdiyne nanoribbons were laterally compared with the thermal conductivity of the graphene nanoribbons. RESULTS: The thermal conductivity of graphdiyne with defects increases with the length and width, which is lower than the intrinsic graphdiyne. The thermal conductivity of the acetylene chain lacking one carbon atom is higher than the one lacking the benzene ring. Typically, the thermal conductivity is larger in armchair than that of zigzag in the same size. Moreover the thermal conductivity of nanoribbons with double vacancy defects is lower than those nanoribbons with single vacancy defects, which can also decrease with the increase of temperature and the number of acetylene chains. The thermal conductivity is not sensitive to shear strain. CONCLUSION: Due to the unique structure and electronic characteristics, graphdiyne has provoked an extensive research interest in the field of nanoscience. Graphdiyne is considered as one of the most promising materials of next-generation electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA