Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE J Biomed Health Inform ; 28(5): 2687-2698, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442051

RESUMEN

Self-supervised Human Activity Recognition (HAR) has been gradually gaining a lot of attention in ubiquitous computing community. Its current focus primarily lies in how to overcome the challenge of manually labeling complicated and intricate sensor data from wearable devices, which is often hard to interpret. However, current self-supervised algorithms encounter three main challenges: performance variability caused by data augmentations in contrastive learning paradigm, limitations imposed by traditional self-supervised models, and the computational load deployed on wearable devices by current mainstream transformer encoders. To comprehensively tackle these challenges, this paper proposes a powerful self-supervised approach for HAR from a novel perspective of denoising autoencoder, the first of its kind to explore how to reconstruct masked sensor data built on a commonly employed, well-designed, and computationally efficient fully convolutional network. Extensive experiments demonstrate that our proposed Masked Convolutional AutoEncoder (MaskCAE) outperforms current state-of-the-art algorithms in self-supervised, fully supervised, and semi-supervised situations without relying on any data augmentations, which fills the gap of masked sensor data modeling in HAR area. Visualization analyses show that our MaskCAE could effectively capture temporal semantics in time series sensor data, indicating its great potential in modeling abstracted sensor data. An actual implementation is evaluated on an embedded platform.


Asunto(s)
Algoritmos , Actividades Humanas , Humanos , Actividades Humanas/clasificación , Procesamiento de Señales Asistido por Computador , Dispositivos Electrónicos Vestibles , Aprendizaje Automático Supervisado , Redes Neurales de la Computación
2.
IEEE J Biomed Health Inform ; 27(8): 3900-3911, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37167056

RESUMEN

Federated Learning (FL) has recently attracted great interest in sensor-based human activity recognition (HAR) tasks. However, in real-world environment, sensor data on devices is non-independently and identically distributed (Non-IID), e.g., activity data recorded by most devices is sparse, and sensor data distribution for each client may be inconsistent. As a result, the traditional FL methods in the heterogeneous environment may incur a drifted global model that causes slow convergence and a heavy communication burden. Although some FL methods are gradually being applied to HAR, they are designed for overly ideal scenarios and do not address such Non-IID problem in the real-world setting. It is still a question whether they can be applied to cross-device FL. To tackle this challenge, we propose ProtoHAR, a prototype-guided FL framework for HAR, which aims to decouple the representation and classifier in the heterogeneous FL setting efficiently. It leverages the global prototype to correct the activity feature representation to make the prototype knowledge flow among clients without leaking privacy while solving a better classifier to avoid excessive drift of the local model in personalized training. Extensive experiments are conducted on four publicly available datasets: USC-HAD, UNIMIB-SHAR, PAMAP2, and HARBOX, which are collected in both controlled environments and real-world scenarios. The results show that compared with the state-of-the-art FL algorithms, ProtoHAR achieves the best performance and faster convergence speed in HAR datasets.


Asunto(s)
Algoritmos , Comunicación , Humanos , Ambiente Controlado , Actividades Humanas , Conocimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...