Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 476: 134965, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38905972

RESUMEN

Dominant microorganisms and functional genes, including hgcA, hgcB, merA, and merB, have been identified to be responsible for mercury (Hg) methylation or methylmercury (MeHg) demethylation. However, their in situ correlation with MeHg levels and the processes of Hg methylation and MeHg demethylation in coastal areas remains poorly understood. In this study, four functional genes related to Hg methylation and MeHg demethylation (hgcA, hgcB, merA, and merB) were all detected in the sediments of the Eastern China Coastal Seas (ECCSs) (representative coastal seas highly affected by human activities) using metagenomic approaches. HgcA was identified to be the key gene controlling the in situ net production of MeHg in the ECCSs. Based on metagenomic analysis and incubation experiments, sulfate-reducing bacteria were identified as the dominant microorganisms controlling Hg methylation in the ECCSs. In addition, hgcA gene was positively correlated with the MeHg content and Hg methylation rates, highlighting the potential roles of Hg methylation genes and microorganisms influenced by sediment physicochemical properties in MeHg cycling in the ECCSs. These findings highlighted the necessity of conducting similar studies in other natural systems for elucidating the molecular mechanisms underlying MeHg production in aquatic environments.

2.
Water Res ; 258: 121792, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772318

RESUMEN

Coastal seas contribute the majority of human methylmercury (MeHg) exposure via marine fisheries. The terrestrial area surrounding the Bohai Sea and Yellow Sea (BS and YS) is one of the mercury (Hg) emission "hot spots" in the world, resulting in high concentrations of Hg in BS and YS seawater in comparison to other marine systems. However, comparable or even lower Hg levels were detected in seafood from the BS and YS than other coastal regions around the word, suggesting a low system bioaccumulation of Hg. Reasoning a low system efficiency of MeHg production (represented by MeHg/THg (total Hg) in seawater) may be present in these two systems, seven cruises were conducted in the BS and YS to test this hypothesis. MeHg/THg ratios in BS and YS seawater were found to be lower than that in most coastal systems, indicating that the system efficiency of MeHg production is relatively lower in the BS and YS. The low system efficiency of MeHg production reduces the risk of Hg in the BS and YS with high Hg discharge intensity. By measuring in situ production and degradation of MeHg using double stable isotope addition method, and MeHg discharge flux from various sources and its exchange at various interfaces, the budgets of MeHg in the BS and YS were estimated. The results indicate that in situ methylation and demethylation are the major source and sink of MeHg in the BS and YS. By comparing the potential controlling processes and environmental parameters for MeHg/THg in the BS and YS with the other coastal seas, estuaries and bays, lower transport efficiency of inorganic Hg from water column to the sediment, slower methylation of Hg, and rapid demethylation of MeHg were identified to be major reasons for the low system efficiency of MeHg production in the BS and YS. This study highlights the necessity of monitoring the system efficiency of MeHg production, associated processes, and controlling parameters to evaluate the efficiency of reducing Hg emissions in China as well as the other countries.


Asunto(s)
Monitoreo del Ambiente , Compuestos de Metilmercurio , Agua de Mar , Contaminantes Químicos del Agua , Agua de Mar/química , Océanos y Mares , China , Mercurio
3.
Ecotoxicol Environ Saf ; 180: 715-722, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31152985

RESUMEN

Elemental mercury (Hg0) is the major form of mercury (Hg) emitted into the environment via anthropogenic activities, resulting in the distribution of Hg worldwide via atmospheric transport. Hg0 in oceans plays an important role in global Hg cycling, mainly by affecting the oceanic-atmospheric exchange of Hg. Due to the large amounts of Hg that are released into Chinese coastal seas from rivers and other sources, Chinese coastal seas are thought to be important sources of Hg in open oceans and in the atmosphere. There have been some studies on the distribution of dissolved gaseous mercury (DGM) in Chinses coastal seas and their controlling factors. However, most of these studies were focused on the surface seawater. There is still a lack of comprehensive study on the DGM through the entire water column in Chinese coastal seas. In this study, two cruises were conducted in August 2017 and in December 2017 to January 2018 to identify the distribution of DGM and its controlling factors in the Yellow Sea (YS) and the Bohai Sea (BS). The concentrations of DGM were higher in summer (167.5 ±â€¯121.4 pg/L) than in winter (41.5 ±â€¯25.5 pg/L), reflecting a significant seasonal variation in DGM. DGM concentrations in the BS and the YS were higher than in open oceans and lower than in some coastal regions. DGM concentrations were generally highest in the BS, followed by the northern YS and the southern YS in summer, whereas the reverse trend was observed in winter. DGM in seawater presented a complicated spatial distribution pattern, with high DGM concentration areas present both nearshore and offshore areas. This result indicates that both terrestrial input and in situ production may play important roles in controlling the DGM distribution. Correlation and multiple regression analyses suggested that temperature (T) and wind speed may be important factors affecting the seasonal variation in DGM in the YS and the BS, and reactive Hg (RHg), dissolved Hg (DHg), dissolved oxygen (DO) and suspended particulate matter (SPM) play important roles in controlling the spatial distribution of DGM.


Asunto(s)
Gases/análisis , Mercurio/análisis , Océanos y Mares , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Atmósfera/química , Monitoreo del Ambiente , Estaciones del Año , Temperatura , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA