Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 103(5): 2700-2708, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36335553

RESUMEN

BACKGROUND: Glycinin is one of the most highly allergenic proteins in soybeans, and G2 is one of the five allergenic subunits of glycinin. Compared with the alkaline chain, the acidic chain A2 of the G2 subunit has strong allergenicity. However, the precise epitopes of A2 and the epitopes destroyed during processing are still unknown. RESULTS: In the present study, preparation of two specific antibodies damaged by processing and phage display techniques were applied to locate the antigenic epitopes of glycinin A2 polypeptide chains disrupted by two processing techniques (thermal processing and ultra-high pressure combined thermal processing). Bioinformatics methods were used to predict the possible epitopes of the A2 chain. The A2 chain and its overlapping segments were introduced into T7 phages and expressed on phage shell by phage display. An indirect enzyme-linked immunosorbent assay was used to screen for antigenic epitopes that had been disrupted by the two processing technologies. The results showed that the dominant antigenic region disrupted by processing was located mainly in the A2-3-B fragment. The reacting experiment with the serum of allergic patients showed that the A2-3-B fragment protein was not only an antigenic region, but also an allergenic region. The two processing technologies destroyed the allergenic epitopes of A2 chain, thereby reducing the allergenicity of protein. The amino acids where the dominant allergenic region disrupted by processing was located were: 233 AIVTVKGGLRVTAPAMRKPQQEEDDDDEEEQPQCVE268 . CONCLUSION: Precise epitopes of the acidic chain A2 in glycinin were identified and epitopes destroyed in two common processing methods were also obtained. The application products of rapid detection of de-allergenicity effect of processed food can be developed according to the location of processed destruction allergenic region, which is of great significance with respect to preventing the occurrence of soybean allergenic diseases. © 2022 Society of Chemical Industry.


Asunto(s)
Hipersensibilidad a los Alimentos , Globulinas , Humanos , Glycine max/química , Epítopos/química , Alérgenos , Antígenos de Plantas , Proteínas de Soja/química , Globulinas/química
2.
Polymers (Basel) ; 14(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35267880

RESUMEN

A major challenge in waste rubber (WR) industry is achieving a high sol fraction and high molecular weight of recycled rubber at the same time. Herein, the WR from the shoe industry was thermo-mechanically ground via the torque rheometer. The effect of grinding temperature and filling rate were systematically investigated. The particle size distribution, structure evolution, and morphology of the recycled rubber were explored by laser particle size analyzer, Fourier transform infrared spectroscopy (FTIR), sol fraction analysis, gel permeation chromatography (GPC), differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The results indicate that the thermo-mechanical method could reduce the particle size of WR. Moreover, the particle size distribution of WR after being ground can be described by Rosin's equation. The oxidation reaction occurs during thermal-mechanical grinding. With the increase of the grinding temperature and filling rate, the sol fraction of the recycled WR increases. It is also found that a high sol fraction (43.7%) and high molecular weight (35,284 g/mol) of reclaimed rubber could be achieved at 80 °C with a filling rate of 85%. Moreover, the obtained recycled rubber compound with SBR show a similar vulcanization characteristics to pure SBR. Our selective decomposition of waste rubber strategy opens up a new way for upgrading WR in shoe industry.

3.
Nanomaterials (Basel) ; 11(8)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34443905

RESUMEN

Tuning the high properties of segregated conductive polymer materials (CPCs) by incorporating nanoscale carbon fillers has drawn increasing attention in the industry and academy fields, although weak interfacial interaction of matrix-filler is a daunting challenge for high-loading CPCs. Herein, we present a facile and efficient strategy for preparing the segregated conducting ultra-high molecular weight polyethylene (UHMWPE)-based composites with acceptable mechanical properties. The interfacial interactions, mechanical properties, electrical properties and electromagnetic interference (EMI) shielding effectiveness (SE) of the UHMWPE/conducting carbon black (CCB) composites were investigated. The morphological and Raman mapping results showed that UHMWPE/high specific surface area CCB (h-CCB) composites demonstrate an obviously interfacial transition layer and strongly interfacial adhesion, as compared to UHMWPE/low specific surface area CCB (l-CCB) composites. Consequently, the high-loading UHMWPE/h-CCB composite (beyond 10 wt% CCB dosage) exhibits higher strength and elongation at break than the UHMWPE/l-CCB composite. Moreover, due to the formation of a densely stacked h-CCB network under the enhanced filler-matrix interfacial interactions, UHMWPE/h-CCB composite possesses a higher EMI SE than those of UHMWPE/l-CCB composites. The electrical conductivity and EMI SE value of the UHMWPE/h-CCB composite increase sharply with the increasing content of h-CCB. The EMI SE of UHMWPE/h-CCB composite with 10 wt% h-CCB is 22.3 dB at X-band, as four times that of the UHMWPE/l-CCB composite with same l-CCB dosage (5.6 dB). This work will help to manufacture a low-cost and high-performance EMI shielding material for modern electronic systems.

4.
ACS Omega ; 6(23): 15078-15088, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34151088

RESUMEN

The low-percolation-threshold conductive networking structure is indispensable for the high performance and functionalization of conductive polymer composites (CPCs). In this work, conductive carbon black (CCB)-reinforced ultrahigh-molecular-weight polyethylene (UHMWPE)/polypropylene (PP) blend with tunable electrical conductivity and good mechanical properties was prepared using a high-speed mechanical mixing method and a compression-molded process. An interconnecting segregated hybrid CCB-polymer network is formed in electrically conductive UHMWPE/PP/CCB (UPC) composites. The UPC composites possess a dense conductive pathway at a low percolation threshold of 0.48 phr. The composite with 3 phr CCB gives an electrical conductivity value of 1.67 × 10-3 S/cm, 12 orders of magnitude higher than that of the polymeric matrix, suggesting that CCB improves both the electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) of the composite at the loading fraction over its percolation threshold. The composite with 15 phr CCB presents an absorption-dominated electromagnetic interference shielding effectiveness (EMI SE) as high as 27.29 dB at the X-band. The composite also presents higher tribological properties, mechanical properties, and thermal stability compared to the UP blend. This effort provides a simple and effective way for the mass fabrication of CPC materials with excellent performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...