Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroepidemiology ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705143

RESUMEN

INTRODUCTION: Preclinical evidence demonstrated the therapeutic potential of TZDs for the treatment of intracerebral hemorrhage (ICH). The present study conducted an investigation of cerebrovascular and cardiovascular outcomes following ICH in patients with type 2 diabetes mellitus (T2DM) treated with or without TZDs. METHODS: This retrospective nested case-control study used data from the Taiwan National Health Insurance Research Database. A total of 62,515 T2DM patients who were hospitalized with a diagnosis of ICH were enrolled, including 7,603 TZD users. Data for TZD non-users were extracted using propensity score matching. Primary outcomes included death and major adverse cardiovascular events (MACEs), which were defined as a composite of ischemic stroke, hemorrhagic stroke (HS), acute myocardial infarction (AMI), and congestive heart failure (CHF). Patients aged < 20 years with a history of traumatic brain injury or any prior history of MACEs were excluded. RESULTS: TZD users had significantly lower MACE risks compared with TZD non-users following ICH (adjusted hazard ratio [aHR]: 0.90, 95% confidence interval [CI]: 0.85-0.94, p < 0.001). The most significant MACE difference reported for TZD users was HS, which possessed lower incidence than in TZD non-users, especially for the events that happened within 3 months following ICH (aHR: 0.74, 95% CI: 0.62-0.89 within one month, p < 0.01; aHR: 0.68, 95% CI: 0.54-0.85 between 1-3 month). CONCLUSION: The use of TZD in patients with T2DM was associated with a lower risk of subsequent HS and mortality following ICH.

2.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38539876

RESUMEN

Calcium/calmodulin-dependent serine protein kinase (CASK) is a scaffold protein and plays critical roles in neuronal synaptic formation and brain development. Previously, CASK was shown to associate with EGFR to maintain the vulval cell differentiation in C. elegans. In this study, we explored the role of CASK in CHME3 microglial cells. We found that CASK silencing protects cells from H2O2-induced cell death by attenuating PARP-1 activation, mitochondrial membrane potential loss, reactive oxygen species production, and mitochondrial fission, but it increases oxidative phosphorylation. The PARP-1 inhibitor olaparib blocks H2O2-induced cell death, suggesting the death mode of parthanatos. CASK silencing also increases AKT activation but decreases AMPK activation under H2O2 treatment. Pharmacological data further indicate that both signaling changes contribute to cell protection. Different from the canonical parthanatos pathway, we did not observe the AIF translocation from mitochondria into the nucleus, suggesting a non-canonical AIF-independent parthanatos in H2O2-treated CHME3 cells. Moreover, we found that CASK silencing upregulates the EGFR gene and protein expression and increases H2O2-induced EGFR phosphorylation in CHME3 microglia. However, EGFR activation does not contribute to cell protection caused by CASK silencing. In conclusion, CASK plays a crucial role in microglial parthanatos upon H2O2 treatment via stimulation of PARP-1 and AMPK but the inhibition of AKT. These findings suggest that CASK might be an ideal therapeutic target for CNS disorders.

3.
Front Cell Neurosci ; 17: 1146278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545878

RESUMEN

Inhibitory γ-aminobutyric acid (GABA)-ergic interneurons mediate inhibition in neuronal circuitry and support normal brain function. Consequently, dysregulation of inhibition is implicated in various brain disorders. Parvalbumin (PV) and somatostatin (SST) interneurons, the two major types of GABAergic inhibitory interneurons in the hippocampus, exhibit distinct morpho-physiological properties and coordinate information processing and memory formation. However, the molecular mechanisms underlying the specialized properties of PV and SST interneurons remain unclear. This study aimed to compare the transcriptomic differences between these two classes of interneurons in the hippocampus using the ribosome tagging approach. The results revealed distinct expressions of genes such as voltage-gated ion channels and GABAA receptor subunits between PV and SST interneurons. Gabrd and Gabra6 were identified as contributors to the contrasting tonic GABAergic inhibition observed in PV and SST interneurons. Moreover, some of the differentially expressed genes were associated with schizophrenia and epilepsy. In conclusion, our results provide molecular insights into the distinct roles of PV and SST interneurons in health and disease.

4.
J Neurochem ; 163(1): 26-39, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35943292

RESUMEN

Alzheimer disease (AD), a progressive neurodegenerative disorder, is mainly caused by the interaction of genetic and environmental factors. The impact of environmental factors on the genetic mutation in the amyloid precursor protein (APP) is not well characterized. We hypothesized that endoplasmic reticulum (ER) stress would promote disease for the patient carrying the APP D678H mutation. Therefore, we analyzed the impact of a familial AD mutation on amyloid precursor protein (APP D678H) under ER stress. Induced pluripotent stem cells (iPSCs) from APP D678H mutant carrier was differentiated into neurons, which were then analyzed for AD-like changes. Immunocytochemistry and whole-cell patch-clamp recording revealed that the derived neurons on day 28 after differentiation showed neuronal markers and electrophysiological properties similar to those of mature neurons. However, the APP D678H mutant neurons did not have significant alterations in the levels of amyloid-ß (Aß) and phosphorylated tau (pTau) compared to its isogenic wild-type neurons. Only under ER stress, the neurons with the APP D678H mutation had more Aß and pTau via immune detection assays. The higher level of Aß in the APP D678H mutant neurons was probably due to the increased level of ß-site APP cleaving enzyme (BACE1) and decreased level of Aß-degrading enzymes under ER stress. Increased Aß and pTau under ER stress reduced the N-methyl-D-aspartate receptor (NMDAR) in Western blot analysis and altered electrophysiological properties in the mutant neurons. Our study provides evidence that the interaction between genetic mutation and ER stress would induce AD-like changes. Cover Image for this issue: https://doi.org/10.1111/jnc.15420.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Estrés del Retículo Endoplásmico/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Neuronas/metabolismo , Fenotipo , Receptores de N-Metil-D-Aspartato/metabolismo
5.
J Physiol ; 600(14): 3355-3381, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35671148

RESUMEN

The hippocampus is an elongated brain structure which runs along a ventral-to-dorsal axis in rodents, corresponding to the anterior-to-posterior axis in humans. A glutamatergic cell type in the dentate gyrus (DG), the mossy cells (MCs), establishes extensive excitatory collateral connections with the DG principal cells, the granule cells (GCs), and inhibitory interneurons in both hippocampal hemispheres along the longitudinal axis. Although coupling of two physically separated GC populations via long-axis projecting MCs is instrumental for information processing, the connectivity and synaptic features of MCs along the longitudinal axis are poorly defined. Here, using channelrhodopsin-2 assisted circuit mapping, we showed that MC excitation results in a low synaptic excitation-inhibition (E/I) balance in the intralamellar (local) GCs, but a high synaptic E/I balance in the translamellar (distant) ones. In agreement with the differential E/I balance along the ventrodorsal axis, activation of MCs either enhances or suppresses the local GC response to the cortical input, but primarily promotes the distant GC activation. Moreover, activation of MCs enhances the spike timing precision of the local GCs, but not that of the distant ones. Collectively, these findings suggest that MCs differentially regulate the local and distant GC activity through distinct synaptic mechanisms. KEY POINTS: Hippocampal mossy cell (MC) pathways differentially regulate granule cell (GC) activity along the longitudinal axis. MCs mediate a low excitation-inhibition balance in intralamellar (local) GCs, but a high excitation-inhibition balance in translamellar (distant) GCs. MCs enhance the spiking precision of local GCs, but not distant GCs. MCs either promote or suppress local GC activity, but primarily promote distant GC activation.


Asunto(s)
Hipocampo , Fibras Musgosas del Hipocampo , Channelrhodopsins , Giro Dentado/fisiología , Hipocampo/fisiología , Humanos , Interneuronas , Fibras Musgosas del Hipocampo/fisiología
6.
Nutrients ; 13(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34959868

RESUMEN

Declines in physiological functions are the predominant risk factors for age-related diseases, such as cancers and neurodegenerative diseases. Therefore, delaying the aging process is believed to be beneficial in preventing the onset of age-related diseases. Previous studies have demonstrated that Graptopetalum paraguayense (GP) extract inhibits liver cancer cell growth and reduces the pathological phenotypes of Alzheimer's disease (AD) in patient IPS-derived neurons. Here, we show that GP extract suppresses ß-amyloid pathology in SH-SYS5Y-APP695 cells and APP/PS1 mice. Moreover, AMP-activated protein kinase (AMPK) activity is enhanced by GP extract in U87 cells and APP/PS1 mice. Intriguingly, GP extract enhances autophagy in SH-SYS5Y-APP695 cells, U87 cells, and the nematode Caenorhabditis elegans, suggesting a conserved molecular mechanism by which GP extract might regulate autophagy. In agreement with its role as an autophagy activator, GP extract markedly diminishes mobility decline in polyglutamine Q35 mutants and aged wild-type N2 animals in C. elegans. Furthermore, GP extract significantly extends lifespan in C. elegans.


Asunto(s)
Envejecimiento/efectos de los fármacos , Crassulaceae/química , Extractos Vegetales/farmacología , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Péptidos beta-Amiloides/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Humanos , Longevidad/efectos de los fármacos , Ratones , Ratones Transgénicos
7.
Pain ; 162(6): 1669-1680, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33433143

RESUMEN

ABSTRACT: Alzheimer disease (AD) is the most common form of dementia, accounting for approximately 60% of cases. In addition to memory loss, changes in pain sensitivity are found in a substantial proportion of patients with AD. However, the mechanism of nociception deficits in AD is still unclear. Here, we hypothesize that the nociception abnormality in AD is due to the aberrant activation of striatal-enriched protein tyrosine phosphatase (STEP) signaling, which modulates proteins related to nociception transduction. Our results indicated that the transgenic mice carrying human amyloid precursor protein (APP) gene had lower sensitivity to mechanical and thermal stimulation than the wild-type group at the ages of 6, 9, and 12 months. These APP mice exhibited elevated STEP activity and decreased phosphorylation of proteins involved in nociception transduction in hippocampi. The pharmacological inhibition of STEP activity using TC-2153 further reversed nociception and cognitive deficits in the APP mice. Moreover, the phosphorylation of nociception-related proteins in the APP mice was also rescued after STEP inhibitor treatment, indicating the key role of STEP in nociception alteration. In summary, this study identifies a mechanism for the reduced nociceptive sensitivity in an AD mouse model that could serve as a therapeutic target to improve the quality of life for patients with AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nocicepción , Proteínas Tirosina Fosfatasas , Calidad de Vida
8.
Sci Rep ; 9(1): 19301, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848379

RESUMEN

Alzheimer's disease (AD) is the most common type of dementia and also one of the leading causes of death worldwide. However, the underlying mechanisms remain unclear, and currently there is no drug treatment that can prevent or cure AD. Here, we have applied the advantages of using induced pluripotent stem cell (iPSC)-derived neurons (iNs) from AD patients, which are able to offer human-specific drug responsiveness, in order to evaluate therapeutic candidates for AD. Using approach involving an inducible neurogenin-2 transgene, we have established a robust and reproducible protocol for differentiating human iPSCs into glutamatergic neurons. The AD-iN cultures that result have mature phenotypic and physiological properties, together with AD-like biochemical features that include extracellular ß-amyloid (Aß) accumulation and Tau protein phosphorylation. By screening using a gene set enrichment analysis (GSEA) approach, Graptopetalum paraguayense (GP) has been identified as a potential therapeutic agent for AD from among a range of Chinese herbal medicines. We found that administration of a GP extract caused a significantly reduction in the AD-associated phenotypes of the iNs, including decreased levels of extracellular Aß40 and Aß42, as well as reduced Tau protein phosphorylation at positions Ser214 and Ser396. Additionally, the effect of GP was more prominent in AD-iNs compared to non-diseased controls. These findings provide valuable information that suggests moving extracts of GP toward drug development, either for treating AD or as a health supplement to prevent AD. Furthermore, our human iN-based platform promises to be a useful strategy when it is used for AD drug discovery.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/genética , Crassulaceae/química , Fragmentos de Péptidos/genética , Proteínas tau/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/efectos de los fármacos , Descubrimiento de Drogas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/patología
9.
Mol Neurodegener ; 12(1): 30, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28438208

RESUMEN

BACKGROUND: Microglia mediate amyloid-beta peptide (Aß)-induced neuroinflammation, which is one of the key events in the pathogenesis of Alzheimer's disease (AD). Decoy receptor 3 (DcR3)/TNFRSF6B is a pleiotropic immunomodulator that promotes macrophage differentiation toward the M2 anti-inflammatory phenotype. Based on its role as an immunosupressor, we examined whether DcR3 could alleviate neuroinflammation and AD-like deficits in the central nervous system. METHOD: We crossed human APP transgenic mice (line J20) with human DcR3 transgenic mice to generate wild-type, APP, DcR3, and APP/DcR3 mice for pathological analysis. The Morris water maze, fear conditioning test, open-field, and elevated-plus maze were used to access their cognitive behavioral changes. Furthermore, the pathological and immune profiles were examined by immunostaining, ELISA, Q-PCR, and IP. In vitro assays were designed to examine DcR3-mediated innate cytokine profile alteration and the potential protective mechanism. RESULTS: We reported that DcR3 ameliorates hippocampus-dependent memory deficits and reduces amyloid plaque deposition in APP transgenic mouse. The protective mechanism of DcR3 mediates through interacting with heparan sulfate proteoglycans and activating IL-4+YM1+ M2a-like microglia that reduces Aß-induced proinflammatory cytokines and promotes phagocytosis ability of microglia. CONCLUSION: The neuroprotective effect of DcR3 is mediated via modulating microglia activation into anti-inflammatory M2a phenotype, and upregulating DcR3 expression in the brain may be a potential therapeutic approach for AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Encéfalo/metabolismo , Trastornos de la Memoria/genética , Microglía/metabolismo , Miembro 6b de Receptores del Factor de Necrosis Tumoral/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Péptidos beta-Amiloides/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Trastornos de la Memoria/metabolismo , Ratones Transgénicos , Placa Amiloide/metabolismo , Placa Amiloide/patología
10.
Exp Mol Med ; 49(12): e405, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29611543

RESUMEN

Genetic mutations in triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to a variety of neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia and Parkinson's disease. In the brain, TREM2 is highly expressed on the cell surface of microglia, where it can transduce signals to regulate microglial functions such as phagocytosis. To date, mechanisms underlying intracellular trafficking of TREM2 remain elusive. Mutations in the presenilin 1 (PS1) catalytic subunit of the γ-secretase complex have been associated with increased generation of the amyloidogenic Aß (amyloid-ß) 42 peptide through cleavage of the Aß precursor amyloid precursor protein. Here we found that TREM2 interacts with PS1 in a manner independent of γ-secretase activity. Mutations in TREM2 alter its subcellular localization and affects its interaction with PS1. Upregulation of PS1 reduces, whereas downregulation of PS1 increases, steady-state levels of cell surface TREM2. Furthermore, PS1 overexpression results in attenuated phagocytic uptake of Aß by microglia, which is reversed by TREM2 overexpression. Our data indicate a novel role for PS1 in regulating TREM2 intracellular trafficking and pathophysiological function.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Presenilina-1/metabolismo , Receptores Inmunológicos/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Biotinilación , Línea Celular , Células HEK293 , Humanos , Inmunoprecipitación , Glicoproteínas de Membrana/genética , Ratones , Mutación/genética , Fagocitosis/genética , Fagocitosis/fisiología , Presenilina-1/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Receptores Inmunológicos/genética
11.
Oncotarget ; 7(19): 27916-25, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27034007

RESUMEN

The purpose of this study was to investigate the behavioral alterations and histological changes of the brain after FUS-induced BBB disruption (BBBD). Rats were behaviorally tested using the open field, hole-board, and grip strength tests from day 1 through day 32 after undergoing BBBD induced by FUS with either a mild or heavy parameter. In the open field test, we found an increase in center entries on day 1 and day 9 following heavy FUS treatment and a decrease in center entries at day 18 following mild FUS treatment. With regard to memory-related alterations, rats subjected to heavy FUS treatment exhibited longer latency to start exploring and to find the first baited hole. However, rats subjected to mild FUS treatment exhibited no significant differences in terms of memory performance or grip force. The obtained data suggest that heavy FUS treatment might induce hyperactivity, spatial memory impairment, and forelimb gripping deficits. Furthermore, while mild FUS treatment may have an impact on anxiety-related behaviors, the data suggested it had no impact on locomotor activity, memory, or grip force. Thus, the behavioral alterations following FUS-induced BBBD require further investigation before clinical application.


Asunto(s)
Conducta Animal/efectos de la radiación , Barrera Hematoencefálica/efectos de la radiación , Encéfalo/efectos de la radiación , Memoria Espacial/efectos de la radiación , Ondas Ultrasónicas/efectos adversos , Animales , Encéfalo/patología , Masculino , Ratas , Ratas Sprague-Dawley
12.
Dement Geriatr Cogn Dis Extra ; 5(3): 424-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26675645

RESUMEN

OBJECTIVE: We aimed to identify biomarkers of Alzheimer's disease (AD) in order to improve diagnostic accuracy at mild stage. METHODS: AD patients aged >50 years were included in the disease group. We evaluated the relationship between potential blood and cerebrospinal fluid inflammatory biomarkers, cognitive status, temporal lobe atrophy and disease severity. Inflammatory biomarkers including interleukin 6 (IL-6), IL-18, fractalkine and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) levels were measured. APOE genotypes were determined. RESULTS: We enrolled 41 subjects in the disease group and 40 subjects in the normal control group. The majority (88.9%) of subjects in the disease group had mild AD. Elevated levels of plasma IL-6 and decreased levels of plasma TRAIL in the disease group were noted. Plasma levels of IL-6 and TRAIL were significantly correlated with their cerebrospinal fluid levels. CONCLUSION: Plasma IL-6 and TRAIL were identified as potential biomarkers of AD at an early stage.

13.
Mol Neurobiol ; 52(3): 1835-1849, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25394380

RESUMEN

Early-onset familial Alzheimer's disease (AD) is most commonly associated with the mutations in presenilin-1 (PS1). PS1 is the catalytic component of the γ-secretase complex, which cleaves amyloid precursor protein to produce amyloid-ß (Aß), the major cause of AD. Presenilin enhancer 2 (Pen2) is critical for activating γ-secretase and exporting PS1 from endoplasmic reticulum (ER). Among all the familial AD-linked PS1 mutations, mutations at the G206 amino acid are the most adjacent position to the Pen2 binding site. Here, we characterized the effect of a familial AD-linked PS1 G206D mutation on the PS1-Pen2 interaction and the accompanied alteration in γ-secretase-dependent and -independent functions. We found that the G206D mutation reduced PS1-Pen2 interaction, but did not abolish γ-secretase formation and PS1 endoproteolysis. For γ-secretase-dependent function, the G206D mutation increased Aß42 production but not Notch cleavage. For γ-secretase-independent function, this mutation disrupted the ER calcium homeostasis but not lysosomal calcium homeostasis and autophagosome maturation. Impaired ER calcium homeostasis may due to the reduced mutant PS1 level in the ER. Although this mutation did not alter the cell survival under stress, both increased Aß42 ratio and disturbed ER calcium regulation could be the mechanisms underlying the pathogenesis of the familial AD-linked PS1 G206D mutation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mutación/genética , Fragmentos de Péptidos/metabolismo , Presenilina-1/genética , Enfermedad de Alzheimer/patología , Animales , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplásmico/patología , Ratones
14.
PLoS One ; 9(6): e97902, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24926785

RESUMEN

Upon injury, the direct damage and the subsequent secondary injury in the brain often result in chronic neurological disorders. Due to multifactorial nature of secondary injury and subsequent complex cellular responses, much of the underlying mechanisms are unclear. This study used an adult zebrafish cerebellum injury model to investigate the phenotypes and the secondary injury responses for recovery mechanisms of injured brain. Using the time course microarray analysis, a candidate protein-protein interaction (PPI) network was refined as cerebellar wound healing PPI network by dynamic modeling and big data mining. Pathway enrichment and ontological analysis were incorporated into the refined network to highlight the main molecular scheme of cerebellar wound healing. Several significant pathways, including chemokine, Phosphatidylinositide 3-kinases, and axon guidance signaling pathway and their cross-talks through PI3K, PAK2, and PLXNA3 were identified to coordinate for neurogenesis and angiogenesis, which are essential for the restoration of the injured brain. Our finding provides an insight into the molecular restoration mechanisms after traumatic brain injury, and open up new opportunity to devise the treatment for traumatic brain injury in human.


Asunto(s)
Lesiones Encefálicas/metabolismo , Cerebelo/fisiopatología , Proteómica/métodos , Cicatrización de Heridas , Proteínas de Pez Cebra/metabolismo , Animales , Lesiones Encefálicas/fisiopatología , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Humanos , Modelos Neurológicos , Neurogénesis , Fosfatidilinositol 3-Quinasa/metabolismo , Análisis por Matrices de Proteínas , Mapas de Interacción de Proteínas , Transducción de Señal , Pez Cebra
15.
J Alzheimers Dis ; 25(1): 145-50, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21335660

RESUMEN

Familial Alzheimer's disease (FAD) is genetically heterogeneous, autosomal dominant, with nearly 100% penetrance. In FAD, most common causative genetic mutations are presenilin 1 (PSEN1), presenilin 2 and amyloid-ß protein precursor. We demonstrate a family presenting as early-onset AD with a rapid deterioration course and seizure developed after 1.5 years of symptoms. A histopathological examination of the frontal cortex showed amyloid deposition and abundant phosphorylated tau deposition. In both cases, a single nucleotide mutation from guanine to adenine at exon 7 was found in PSEN1 (c.617G>A, codon change from GGT to GAT). Though G206D mutation in PSEN1 gene was found in FAD, no clinical phenotype or pathological finding was documented. This is the first report of PSEN1 mutation (Gly206Asp) with features of seizure and a rapid progressive cognitive decline in a pathologically confirmed case of FAD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Sustitución de Aminoácidos/genética , Mutación/genética , Fenotipo , Presenilina-1/genética , Adulto , Enfermedad de Alzheimer/diagnóstico , Secuencia de Bases , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...