Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923257

RESUMEN

Oil-Camellia (Camellia oleifera), belonging to the Theaceae family Camellia, is an important woody edible oil tree species. The Camellia oil in its mature seed kernels, mainly consists of more than 90% unsaturated fatty acids, tea polyphenols, flavonoids, squalene and other active substances, which is one of the best quality edible vegetable oils in the world. However, genetic research and molecular breeding on oil-Camellia are challenging due to its complex genetic background. Here, we successfully report a chromosome-scale genome assembly for a hexaploid oil-Camellia cultivar Changlin40. This assembly contains 8.80 Gb genomic sequences with scaffold N50 of 180.0 Mb and 45 pseudochromosomes comprising 15 homologous groups with three members each, which contain 135 868 genes with an average length of 3936 bp. Referring to the diploid genome, intragenomic and intergenomic comparisons of synteny indicate homologous chromosomal similarity and changes. Moreover, comparative and evolutionary analyses reveal three rounds of whole-genome duplication (WGD) events, as well as the possible diversification of hexaploid Changlin40 with diploid occurred approximately 9.06 million years ago (MYA). Furthermore, through the combination of genomics, transcriptomics and metabolomics approaches, a complex regulatory network was constructed and allows to identify potential key structural genes (SAD, FAD2 and FAD3) and transcription factors (AP2 and C2H2) that regulate the metabolism of Camellia oil, especially for unsaturated fatty acids biosynthesis. Overall, the genomic resource generated from this study has great potential to accelerate the research for the molecular biology and genetic improvement of hexaploid oil-Camellia, as well as to understand polyploid genome evolution.

2.
Front Plant Sci ; 14: 1113125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909419

RESUMEN

The molecular mechanisms of freezing tolerance are unresolved in the perennial trees that can survive under much lower freezing temperatures than annual herbs. Since natural conditions involve many factors and temperature usually cannot be controlled, field experiments alone cannot directly identify the effects of freezing stress. Lab experiments are insufficient for trees to complete cold acclimation and cannot reflect natural freezing-stress responses. In this study, a new method was proposed using field plus lab experiments to identify freezing tolerance and associated genes in subtropical evergreen broadleaf trees using Camellia oleifera as a case. Cultivated C. oleifera is the dominant woody oil crop in China. Wild C. oleifera at the high-elevation site in Lu Mountain could survive below -30°C, providing a valuable genetic resource for the breeding of freezing tolerance. In the field experiment, air temperature was monitored from autumn to winter on wild C. oleifera at the high-elevation site in Lu Mountain. Leave samples were taken from wild C. oleifera before cold acclimation, during cold acclimation and under freezing temperature. Leaf transcriptome analyses indicated that the gene functions and expression patterns were very different during cold acclimation and under freezing temperature. In the lab experiments, leaves samples from wild C. oleifera after cold acclimation were placed under -10°C in climate chambers. A cultivated C. oleifera variety "Ganwu 1" was used as a control. According to relative conductivity changes of leaves, wild C. oleifera showed more freezing-tolerant than cultivated C. oleifera. Leaf transcriptome analyses showed that the gene expression patterns were very different between wild and cultivated C. oleifera in the lab experiment. Combing transcriptome results in both of the field and lab experiments, the common genes associated with freezing-stress responses were identified. Key genes of the flg22, Ca2+ and gibberellin signal transduction pathways and the lignin biosynthesis pathway may be involved in the freezing-stress responses. Most of the genes had the highest expression levels under freezing temperature in the field experiment and showed higher expression in wild C. oleifera with stronger freezing tolerance in the lab experiment. Our study may help identify freezing tolerance and underlying molecular mechanisms in trees.

3.
Food Addit Contam Part B Surveill ; 14(4): 264-270, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34236284

RESUMEN

Bamboo shoot is an indispensable vegetable in Southeastern China, so a survey of heavy metals in bamboo shoots is a relevant topic of interest. The present study sought to analyse the content of seven heavy metals (As, Cd, Cr, Cu, Mn, Pb and Zn) in six bamboo shoot species from Southeastern China. Percentages of 3.8% (Cd) and 8.9% (Pb) of the samples exceeded the maximum limits as established by the Chinese legislation. Further health risk assessment exhibited that the Cd intake contribution of these samples could not be negligible. The hazard index (HI) at average exposure was less than one. The average HI values in moso bamboo shoot were significantly higher than those of other bamboo shoot species. Overall, the results indicated that the intake of bamboo shoots is safe for consumers in Southeastern China.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Monitoreo del Ambiente , Contaminación de Alimentos , Metales Pesados/análisis , Metales Pesados/toxicidad , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Verduras
4.
Sci Rep ; 10(1): 20676, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244073

RESUMEN

To assess the adaptability of Camellia oleifera for introduction in new growth locations, this study evaluated 10 representative C. oleifera cultivars from the main areas in China where this oil-producing evergreen crop is grown. Cluster analysis, correlation analysis, and membership function analysis were used to evaluate various indices of the selected C. oleifera cultivars, including flowering phenology, cold tolerance, leaf structure, pollen characteristics, and pollen viability. The correlation analysis identified the full blossoming time, leaf palisade and spongy tissue thickness, pollen deformity rate, and pollen activity as key indices for determining the adaptability of the cultivars to new areas. The membership function analysis of the 10 C. oleifera cultivars revealed the following order of adaptability: 'XLC25' > 'Changlin4hao' > 'Ganzhouyou8hao' > 'Ganzhouyou6hao' > 'Tiechengyihao' > 'Eyou465' > 'XLC10' > 'Changlin3hao' > 'Changlin18hao' > 'QY235.' When introducing C. oleifera cultivars to new regions, the higher-ranked cultivars are more likely to be successful. The results of this study may provide a new direction for the comprehensive assessment of plant introduction and domestication potential, i.e., the assessment of the vegetative and reproductive growth, adversity resistance, and blossoming time of plants.


Asunto(s)
Camellia/crecimiento & desarrollo , China , Flores/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Polen/crecimiento & desarrollo
5.
Plant Dis ; 104(2): 474-482, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31790642

RESUMEN

Tea-oil tree (Camellia oleifera Abel) is an important edible oil woody plant with a planting area over 3,800,000 hectares in southern China. Anthracnose is a serious disease of tea-oil tree in southern China, causing severe economic losses and posing a huge threat to the Ca. oleifera industry. Based on recent developments in the classification of Colletotrichum species, the objective of this study was to identify Colletotrichum species associated with tea-oil tree and examine their pathogenicity on leaves and fruits of Ca. oleifera. In total, 232 isolates were obtained from Ca. oleifera leaves and fruits with anthracnose symptoms. These isolates were further characterized based on morphology and multilocus phylogenetic analyses using partial DNA sequences at the ribosomal internal transcribed spacer regions and ß-tubulin, actin, calmodulin, glyceraldehyde-3-phosphate dehydrogenase, and chitin synthase-encoding genes. The fungal isolates belong to five species: C. camelliae, C. fructicola, C. siamense, C. aenigma, and C. gloeosporioides. C. camelliae was the most predominant and widely distributed species on fruits of Ca. oleifera (91.4%), followed by C. fructicola (6.3%). However, C. fructicola was common and widely distributed species on leaves (75.9%), followed by C. camelliae (17.2%). There was no evidence of geographical specialization of the different species. Pathogenicity assays showed that all tested isolates, including 20 of C. camelliae, 11 of C. fructicola, four of C. siamense, two of C. aenigma, and one of C. gloeosporioides, were pathogenic to leaves and fruits of Ca. oleifera. Among the five species, C. camelliae species showed strong pathogenicity on both leaves and fruits of Ca. oleifera, and C. fructicola, C. siamense, C. aenigma, and C. gloeosporioides all showed weak pathogenicity on both leaves and fruits. No relationship was found between origin of isolates and their virulence. This is the first description of C. camelliae, C. fructicola, C. siamense, and C. gloeosporioides from the fruits of Ca. oleifera in China.


Asunto(s)
Camellia , Colletotrichum , China , ADN de Hongos , Filogenia , Enfermedades de las Plantas
6.
Plant Cell Physiol ; 59(10): 1990-2003, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137600

RESUMEN

The tung tree (Vernicia fordii) is one of only a few plant species that produces high oil-yielding seeds rich in α-eleostearic acid (α-ESA, 18:3Δ9cis, 11trans, 13trans), a conjugated trienoic fatty acid with valuable industrial and medical properties. Previous attempts have been made to engineer tung oil biosynthesis in transgenic oilseed crops, but these efforts have met with limited success. Here we present a high-quality genome assembly and developing seed transcriptomic data set for this species. Whole-genome shotgun sequencing generated 176 Gb of genome sequence data used to create a final assembled sequence 1,176,320 kb in size, with a scaffold N50 size of >474 kb, and containing approximately 47,000 protein-coding genes. Genomic and transcriptomic data revealed full-length candidate genes for most of the known and suspected reactions that are necessary for fatty acid desaturation/conjugation, acyl editing and triacylglycerol biosynthesis. Seed transcriptomic analyses also revealed features unique to tung tree, including unusual transcriptional profiles of fatty acid biosynthetic genes, and co-ordinated (and seemingly paradoxical) simultaneous up-regulation of both fatty acid ß-oxidation and triacylglycerol biosynthesis in mid-development seeds. The precise temporal control of the expression patterns for these two pathways may account for α-ESA enrichment in tung seeds, while controlling the levels of potentially toxic by-products. Deeper understanding of these processes may open doors to the design of engineered oilseeds containing high levels of α-ESA.


Asunto(s)
Genoma de Planta/genética , Ácidos Linolénicos/metabolismo , Semillas/metabolismo , Transcriptoma/genética , Triglicéridos/biosíntesis , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA