Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 94(27): 9586-9594, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35749270

RESUMEN

Clinically and biologically, it is essential to detect rare DNA-sequence variants for early cancer diagnosis or drug-resistance mutation identification. Some of the common quantitative polymerase chain reaction (qPCR)-based variant detection methods are restricted in the limit of detection (LoD) because the DNA polymerases used for these methods have a high polymerase misincorporation rate; thus, the detection sensitivity is sometimes unsatisfactory. With the proofreading activity, high-fidelity (HiFi) DNA polymerases have a 50- to 250-fold higher fidelity. However, there are currently no proper probe-based designs functioning as the fluorescence indicator allowing multiplexed HiFi qPCR reactions, thus restricting the application of HiFi DNA polymerases like the variant detection. We presented the occlusion system, composed of a 5'-overhanged primer with a fluorophore modification and a probe with a short-stem hairpin and a 3' quencher modification. We demonstrated that the occlusion system allowed multiplexing HiFi qPCR reaction, and it was compatible with the current variant-enrichment method to improve the LoD up to 10-fold. Thus, the occlusion system satisfactorily functioned as an efficient fluorescence indicator in HiFi qPCR reactions and allowed the application of HiFi DNA polymerases in variant detection methods to improve detection sensitivity.


Asunto(s)
ADN Polimerasa Dirigida por ADN , ADN , ADN/genética , Cartilla de ADN/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Mutación , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
ACS Sens ; 7(4): 1165-1174, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35418222

RESUMEN

Molecular detection of disease-associated mutations, especially those with low abundance, is essential for academic research and clinical diagnosis. Certain variant detection methods reach satisfactory sensitivity and specificity in detecting rare mutations based on the introduction of blocking oligos to prevent the amplification of wild-type or unwanted templates, thus selectively amplifying and enriching the mutations. These blocking oligos usually suppress PCR amplification through the 3' chemical modifications, with high price, slow synthesis, and reduced purity. Herein, we introduce chemistry-free designs to block enzymatic extension during PCR by the steric hindrance from the secondary structures attached to the 3' end of the oligos (nonextensible oligonucleotide, NEO). We demonstrated that NEO efficiently prohibited the extension of both Taq and high-fidelity DNA polymerases. By further applying NEO as blockers in blocker displacement amplification (BDA) qPCR, multiplex BDA (mBDA) NGS, and quantitative BDA (QBDA) NGS methods, we showed that NEO blockers had performance comparable with previously validated chemical modifications. Comparison experiments using QBDA with NEO blockers and droplet digital PCR (ddPCR) on clinical formalin-fixed paraffin-embedded (FFPE) samples exhibited 100% concordance. Lastly, the ability of NEO to adjust plex uniformity through changes of PCR amplification efficiency was demonstrated in an 80-plex NGS panel.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Oligonucleótidos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Oligonucleótidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad
3.
Anal Chem ; 94(2): 934-943, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34932306

RESUMEN

Clinically and biologically, rare DNA sequence variants are significant and informative. However, existing common detection technologies are either complex and time-consuming in workflow, or restricted in the limit of detection (LoD), or do not allow for multiplexing. Blocker displacement amplification (BDA) method can stably and effectively detect and enrich multiple rare variants with LoD around 0.1% variant allele fraction (VAF). Nonetheless, the detailed mutation information has to be identified by additional sequencing technologies. Here, we present allele-specific BDA (As-BDA), a method combining BDA with allele-specific TaqMan (As-TaqMan) probes for effective variant enrichment and simultaneous single nucleotide variant or small insertions and deletions (INDELs) profiling. We demonstrated that As-BDA could detect mutations down to 0.01% VAF. Further, As-BDA could detect up to four mutations with low to 0.1% VAF per reaction using only 15 ng DNA input. The median error of As-BDA in VAF determination is approximately 9.1%. Comparison experiments using As-BDA and droplet digital PCR on peripheral blood mononuclear cell clinical samples showed 100% concordance for samples with mutations at ≥ 0.1% VAF. Hence, we have shown that As-BDA can achieve simultaneous enrichment and identification of multiple targeted mutations within the same reaction with high clinical sensitivity and specificity, thus helpful for clinical diagnosis.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Leucocitos Mononucleares , Alelos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Nat Commun ; 12(1): 6123, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675197

RESUMEN

Quantitation of rare somatic mutations is essential for basic research and translational clinical applications including minimal residual disease (MRD) detection. Though unique molecular identifier (UMI) has suppressed errors for rare mutation detection, the sequencing depth requirement is high. Here, we present Quantitative Blocker Displacement Amplification (QBDA) which integrates sequence-selective variant enrichment into UMI quantitation for accurate quantitation of mutations below 0.01% VAF at only 23,000X depth. Using a panel of 20 genes recurrently altered in acute myeloid leukemia, we demonstrate quantitation of various mutations including single base substitutions and indels down to 0.001% VAF at a single locus with less than 4 million sequencing reads, allowing sensitive MRD detection in patients during complete remission. In a pan-cancer panel and a melanoma hotspot panel, we detect mutations down to 0.1% VAF using only 1 million reads. QBDA provides a convenient and versatile method for sensitive mutation quantitation using low-depth sequencing.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/normas , Leucemia Mieloide Aguda/genética , Melanoma/genética , Mutación , Neoplasia Residual/genética , Calibración , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...