Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1335081, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550868

RESUMEN

Introduction: Plant bacterial wilt is an important worldwide disease caused by Ralstonia solanacearum which is a complex of species. Methods: In this study, we identified and sequenced the genome of R. solanacearum strain gd-2 isolated from tobacco. Results: Strain gd-2 was identified as R. solanacearum species complex (RSSC) phylotype I sequevar 15 and exhibited strong pathogenicity to tobacco. The genome size of gd-2 was 5.93 Mb, including the chromosomes (3.83 Mb) and the megaplasmid (2.10 Mb). Gene prediction results showed that 3,434 and 1,640 genes were identified in the chromosomes and plasmids, respectively. Comparative genomic analysis showed that gd-2 exhibited high conservation with ten highly similar strain genomes and the differences between gd-2 and other genomes were mainly located at positions GI12-GI14. 72 type III effectors (T3Es) were identified and RipAZ2 was a T3E specific to gd-2 compared with other eight sequenced strain. Discussion: Our study provides a new basis and evidence for studying the pathogenic mechanism of R. solanacearum.

2.
Genomics ; 116(3): 110823, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492820

RESUMEN

The TIFY gene family plays an essential role in plant development and abiotic and biotic stress responses. In this study, genome-wide identification of TIFY members in tobacco and their expression pattern analysis in response to Ralstonia solanacearum infection were performed. A total of 33 TIFY genes were identified, including the TIFY, PPD, ZIM&ZML and JAZ subfamilies. Promoter analysis results indicated that a quantity of light-response, drought-response, SA-response and JA-response cis-elements exist in promoter regions. The TIFY gene family exhibited expansion and possessed gene redundancy resulting from tobacco ploidy change. In addition, most NtTIFYs equivalently expressed in roots, stems and leaves, while NtTIFY1, NtTIFY4, NtTIFY18 and NtTIFY30 preferentially expressed in roots. The JAZ III clade showed significant expression changes after inoculation with R. solanacearum, and the expression of NtTIFY7 in resistant varieties, compared with susceptible varieties, was more stably induced. Furthermore, NtTIFY7-silenced plants, compared with the control plants, were more susceptible to bacterial wilt. These results lay a foundation for exploring the evolutionary history of TIFY gene family and revealing gene function of NtTIFYs in tobacco bacterial wilt resistance.


Asunto(s)
Familia de Multigenes , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Ralstonia solanacearum , Ralstonia solanacearum/genética , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Regiones Promotoras Genéticas
3.
Int J Biol Macromol ; 262(Pt 2): 130100, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38350582

RESUMEN

Cucumber mosaic virus (CMV) causes huge economic losses to agriculture every year; thus, understanding the mechanism of plant resistance to CMV is imperative. In this study, an integrated analysis of transmission electron microscopy (TEM) observations and proteomic results was used to identify cytoarchitectural differences in Nicotiana tabacum cv. NC82 (susceptible) and cv. Taiyan 8 (T.T.8; resistant) following infection with CMV. The TEM observations showed that the structure of the chloroplasts and mitochondria was severely damaged at the late stage of infection in NC82. Moreover, the chloroplast stroma and mitochondrial cristae were reduced and disaggregated. However, in T.T.8, organelle structure remained largely intact Selective autophagy predominated in T.T.8, whereas non-selective autophagy dominated in NC82, resembling cellular disorder. Proteomic analysis of T.T.8 revealed differentially expressed proteins (DEPs) mostly associated with photosynthesis, respiration, reactive oxygen species (ROS) scavenging, and cellular autophagy. Biochemical analyses revealed that ROS-related catalase, autophagy-related disulfide isomerase, and jasmonic acid and antioxidant secondary metabolite synthesis-related 4-coumarate:CoA ligase (Nt4CL) exhibited different trends and significant differences in expression in the two cultivars after CMV inoculation. Furthermore, mutant phenotyping verified that reduced Nt4CL expression impaired resistance in T.T.8. The identified DEPs are crucial for maintaining intracellular homeostatic balance and likely contribute to the mechanism of CMV resistance in tobacco. These findings increase our understanding of plant cytological mechanisms conferring resistance to CMV infection.


Asunto(s)
Cucumovirus , Infecciones por Citomegalovirus , Cucumovirus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nicotiana , Proteómica/métodos , Enfermedades de las Plantas
4.
Genomics ; 116(2): 110784, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199265

RESUMEN

Bacterial wilt (BW) caused by Ralstonia solanacearum is a globally prevalent bacterial soil-borne disease. In this study, transcriptome sequencing were subjected to roots after infection with the R. solanacearum in the resistant and susceptible tobacco variety. DEGs that responded to R. solanacearum infection in both resistant and susceptible tobacco contributed to pectinase and peroxidase development and were enriched in plant hormone signal transduction, signal transduction and MAPK signalling pathway KEGG terms. Core DEGs in the resistant tobacco response to R. solanacearum infection were enriched in cell wall, membrane, abscisic acid and ethylene terms. qRT-PCR indicated that Nitab4.5_0004899g0110, Nitab4.5_0004234g0080 and Nitab4.5_0001439g0050 contributed to the response to R. solanacearum infection in different resistant and susceptible tobacco. Silencing the p450 gene Nitab4.5_0001439g0050 reduced tobacco resistance to bacterial wilt. These results improve our understanding of the molecular mechanism of BW resistance in tobacco and solanaceous plants.


Asunto(s)
Ralstonia solanacearum , Ralstonia solanacearum/genética , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Abscísico , Nicotiana/genética , Silenciador del Gen , Resistencia a la Enfermedad/genética
5.
BMC Plant Biol ; 24(1): 67, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38262958

RESUMEN

BACKGROUND: Tobacco mosaic virus (TMV) is a widely distributed viral disease that threatens many vegetables and horticultural species. Using the resistance gene N which induces a hypersensitivity reaction, is a common strategy for controlling this disease in tobacco (Nicotiana tabacum L.). However, N gene-mediated resistance has its limitations, consequently, identifying resistance genes from resistant germplasms and developing resistant cultivars is an ideal strategy for controlling the damage caused by TMV. RESULTS: Here, we identified highly TMV-resistant tobacco germplasm, JT88, with markedly reduced viral accumulation following TMV infection. We mapped and cloned two tobamovirus multiplication protein 2A (TOM2A) homeologs responsible for TMV replication using an F2 population derived from a cross between the TMV-susceptible cultivar K326 and the TMV-resistant cultivar JT88. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated loss-of-function mutations of two NtTOM2A homeologs almost completely suppressed TMV replication; however, the single gene mutants showed symptoms similar to those of the wild type. Moreover, NtTOM2A natural mutations were rarely detected in 577 tobacco germplasms, and CRISPR/Cas9-mediated variation of NtTOM2A led to shortened plant height, these results indicating that the natural variations in NtTOM2A were rarely applied in tobacco breeding and the NtTOM2A maybe has an impact on growth and development. CONCLUSIONS: The two NtTOM2A homeologs are functionally redundant and negatively regulate TMV resistance. These results deepen our understanding of the molecular mechanisms underlying TMV resistance in tobacco and provide important information for the potential application of NtTOM2A in TMV resistance breeding.


Asunto(s)
Virus del Mosaico del Tabaco , Tobamovirus , Nicotiana , Fitomejoramiento , Horticultura
6.
Mol Biol Rep ; 50(5): 4395-4409, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36971909

RESUMEN

BACKGROUND: Tobacco brown spot disease is an important disease caused by Alternaria alternata that affects tobacco production and quality worldwide. Planting resistant varieties is the most economical and effective way to control this disease. However, the lack of understanding of the mechanism of tobacco resistance to tobacco brown spot has hindered progress in the breeding of resistant varieties. METHODS AND RESULTS: In this study, differentially expressed proteins (DEPs), including 12 up-regulated and 11 down-regulated proteins, were screened using isobaric tags for relative and absolute quantification (iTRAQ) by comparing resistant and susceptible pools and analyzing the associated functions and metabolic pathways. Significantly up-regulated expression of the major latex-like protein gene 423 (MLP 423) was detected in both the resistant parent and the population pool. Bioinformatics analysis showed that the NbMLP423 cloned in Nicotiana benthamiana had a similar structure to the NtMLP423 in Nicotiana tabacum, and that expression of both genes respond rapidly to Alternaria alternata infection. NbMLP423 was then used to study the subcellular localization and expression in different tissues, followed by both silencing and the construction of an overexpression system for NbMLP423. The silenced plants demonstrated inhibited TBS resistance, while the overexpressed plants exhibited significantly enhanced resistance. Exogenous applications of plant hormones, such as salicylic acid, had a significant inducing effect on NbMLP423 expression. CONCLUSIONS: Taken together, our results provide insights into the role of NbMLP423 in plants against tobacco brown spot infection and provide a foundation for obtaining resistant tobacco varieties through the construction of new candidate genes of the MLP subfamily.


Asunto(s)
Nicotiana , Proteínas de Plantas , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica , Fitomejoramiento , Enfermedades de las Plantas/genética
7.
Mol Plant Pathol ; 23(12): 1737-1750, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094814

RESUMEN

Tobacco black shank caused by Phytophthora nicotianae is a serious disease in tobacco cultivation. We found that naringenin is a key factor that causes different sensitivity to P. nicotianae between resistant and susceptible tobacco. The level of basal flavonoids in resistant tobacco was distinct from that in susceptible tobacco. Of all flavonoids with different content, naringenin showed the best antimicrobial activity against mycelial growth and sporangia production of P. nicotianae in vitro. However, naringenin showed very low or no antimicrobial activity to other plant pathogens. We found that naringenin induced not only the accumulation of reactive oxygen species, but also the expression of salicylic acid biosynthesis-related genes. Naringenin induced the expression of the basal pathogen resistance gene PR1 and the SAR8.2 gene that contributes to plant resistance to P. nicotianae. We then interfered with the expression of the chalcone synthase (NtCHS) gene, the key gene of the naringenin synthesis pathway, to inhibit naringenin biosynthesis. NtCHS-RNAi rendered tobacco highly sensitive to P. nicotianae, but there was no change in susceptibility to another plant pathogen, Ralstonia solanacearum. Finally, exogenous application of naringenin on susceptible tobacco enhanced resistance to P. nicotianae and naringenin was very stable in this environment. Our findings revealed that naringenin plays a core role in the defence against P. nicotianae and expanded the possibilities for the application of plant secondary metabolites in the control of P. nicotianae.


Asunto(s)
Phytophthora , Phytophthora/genética , Nicotiana/genética , Enfermedades de las Plantas/genética , Flavonoides
8.
Front Plant Sci ; 13: 878267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734263

RESUMEN

Agronomic traits such as plant height (PH), leaf number (LN), leaf length (LL), and leaf width (LW), which are closely related to yield and quality, are important in tobacco (Nicotiana tabacum L.). To identify quantitative trait loci (QTLs) associated with agronomic traits in tobacco, 209 recombinant inbred lines (RILs) and 537 multiparent advanced generation intercross (MAGIC) lines were developed. The biparental RIL and MAGIC lines were genotyped using a 430 K single-nucleotide polymorphism (SNP) chip assay, and their agronomic traits were repeatedly evaluated under different conditions. A total of 43 QTLs associated with agronomic traits were identified through a combination of linkage mapping (LM) and association mapping (AM) methods. Among these 43 QTLs, three major QTLs, namely qPH13-3, qPH17-1, and qLW20-1, were repeatedly identified by the use of various genetically diverse populations across different environments. The candidate genes for these major QTLs were subsequently predicted. Validation and utilization of the major QTL qLW20-1 for the improvement of LW in tobacco were investigated. These results could be applied to molecular marker-assisted selection (MAS) for breeding important agronomic traits in tobacco.

9.
Front Microbiol ; 13: 854792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602040

RESUMEN

Ralstonia solanacearum species complex (RSSC) is a diverse group of plant pathogens that attack a wide range of hosts and cause devastating losses worldwide. In this study, we conducted a comprehensive analysis of 131 RSSC strains to detect their genetic diversity, pathogenicity, and evolution dynamics. Average nucleotide identity analysis was performed to explore the genomic relatedness among these strains, and finally obtained an open pangenome with 32,961 gene families. To better understand the diverse evolution and pathogenicity, we also conducted a series of analyses of virulence factors (VFs) and horizontal gene transfer (HGT) in the pangenome and at the single genome level. The distribution of VFs and mobile genetic elements (MGEs) showed significant differences among different groups and strains, which were consistent with the new nomenclatures of the RSSC with three distinct species. Further functional analysis showed that most HGT events conferred from Burkholderiales and played a great role in shaping the genomic plasticity and genetic diversity of RSSC genomes. Our work provides insights into the genetic polymorphism, evolution dynamics, and pathogenetic variety of RSSC and provides strong supports for the new taxonomic classification, as well as abundant resources for studying host specificity and pathogen emergence.

10.
J Vis Exp ; (182)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35499344

RESUMEN

Black shank, caused by the oomycetes Phytophthora nicotianae, is destructive to tobacco, and this pathogen is highly pathogenic to many solanaceous crops. P. nicotianae is well adapted to high temperatures; therefore, research on this pathogen is gaining importance in agriculture worldwide because of global warming. P. nicotianae-resistant varieties of tobacco plants are commonly screened by inoculation with oat grains colonized by P. nicotianae and monitoring for the disease symptoms. However, it is difficult to quantify the inoculation intensity since accurate inoculation is crucial in this case. This study aimed to develop an efficient and reliable method for evaluating the resistance of tobacco to infection with P. nicotianae. This method has been successfully used to identify resistant varieties, and the inoculation efficiency was confirmed by real-time PCR. The resistance evaluation method presented in this study is efficient and practical for precision breeding, as well as molecular mechanism research.


Asunto(s)
Nicotiana , Phytophthora , Genotipo , Phytophthora/genética , Fitomejoramiento , Investigación , Nicotiana/genética
11.
Front Plant Sci ; 13: 1086950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704165

RESUMEN

Multiparent Advanced Generation Inter-Cross (MAGIC) population is an ideal genetic and breeding material for quantitative trait locus (QTL) mapping and molecular breeding. In this study, a MAGIC population derived from eight tobacco parents was developed. Eight parents and 560 homozygous lines were genotyped by a 430K single-nucleotide polymorphism (SNP) chip assay and phenotyped for nicotine content under different conditions. Four QTLs associated with nicotine content were detected by genome-wide association mapping (GWAS), and one major QTL, named qNIC7-1, was mapped repeatedly under different conditions. Furthermore, by combining forward mapping, bioinformatics analysis and gene editing, we identified an ethylene response factor (ERF) transcription factor as a candidate gene underlying the major QTL qNIC7-1 for nicotine content in tobacco. A presence/absence variation (PAV) at qNIC7-1 confers changes in nicotine content. Overall, the large size of this MAGIC population, diverse genetic composition, balanced parental contributions and high levels of recombination all contribute to its value as a genetic and breeding resource. The application of the tobacco MAGIC population for QTL mapping and detecting rare allelic variation was demonstrated using nicotine content as a proof of principle.

12.
Sci Rep ; 11(1): 809, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436928

RESUMEN

Phytophthora nicotianae is highly pathogenic to Solanaceous crops and is a major problem in tobacco production. The tobacco cultivar Beihart1000-1 (BH) is resistant, whereas the Xiaohuangjin 1025 (XHJ) cultivar is susceptible to infection. Here, BH and XHJ were used as models to identify resistant and susceptible genes using RNA sequencing (RNA-seq). Roots were sampled at 0, 6, 12, 24, and 60 h post infection. In total, 23,753 and 25,187 differentially expressed genes (DEGs) were identified in BH and XHJ, respectively. By mapping upregulated DEGs to the KEGG database, changes of the rich factor of "plant pathogen interaction pathway" were corresponded to the infection process. Of all the DEGs in this pathway, 38 were specifically regulated in BH. These genes included 11 disease-resistance proteins, 3 pathogenesis-related proteins, 4 RLP/RLKs, 2 CNGCs, 7 calcium-dependent protein kinases, 4 calcium-binding proteins, 1 mitogen-activated protein kinase kinase, 1 protein EDS1L, 2 WRKY transcription factors, 1 mannosyltransferase, and 1 calmodulin-like protein. By combining the analysis of reported susceptible (S) gene homologs and DEGs in XHJ, 9 S gene homologs were identified, which included 1 calmodulin-binding transcription activator, 1 cyclic nucleotide-gated ion channel, 1 protein trichome birefringence-like protein, 1 plant UBX domain-containing protein, 1 ADP-ribosylation factor GTPase-activating protein, 2 callose synthases, and 2 cellulose synthase A catalytic subunits. qRT-PCR was used to validate the RNA-seq data. The comprehensive transcriptome dataset described here, including candidate resistant and susceptible genes, will provide a valuable resource for breeding tobacco plants resistant to P. nicotianae infections.


Asunto(s)
Nicotiana/genética , Phytophthora/patogenicidad , Enfermedades de las Plantas/genética , Raíces de Plantas/genética , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Phytophthora/aislamiento & purificación , Fitomejoramiento/métodos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/parasitología , Análisis de Secuencia de ARN/métodos , Nicotiana/inmunología , Nicotiana/parasitología , Transcriptoma
13.
BMC Plant Biol ; 20(1): 378, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807096

RESUMEN

BACKGROUND: At present, the distinctness, uniformity, and stability (DUS) testing of flue-cured tobacco (Nicotiana tabacum L.) depends on field morphological identification, which is problematic in that it is labor intensive, time-consuming, and susceptible to environmental impacts. In order to improve the efficiency and accuracy of tobacco DUS testing, the development of a molecular marker-based method for genetic diversity identification is urgently needed. RESULTS: In total, 91 simple sequence repeats (SSR) markers with clear and polymorphic amplification bands were obtained with polymorphism information content, Nei index, and Shannon information index values of 0.3603, 0.4040, and 0.7228, respectively. Clustering analysis showed that the 33 study varieties, which are standard varieties for flue-cured tobacco DUS testing, could all be distinguished from one another. Further analysis showed that a minimum of 25 markers were required to identify the genetic diversity of these varieties. Following the principle of two markers per linkage group, 48 pairs of SSR markers were selected. Correlation analysis showed that the genetic relationships revealed by the 48 SSR markers were consistent with those found using the 91 SSR markers. CONCLUSIONS: The genetic fingerprints of the 33 standard varieties of flue-cured tobacco were constructed using 48 SSR markers, and an SSR marker-based identification technique for new tobacco varieties was developed. This study provides a reliable technological approach for determining the novelty of new tobacco varieties and offers a solid technical basis for the accreditation and protection of new tobacco varieties.


Asunto(s)
Variación Genética , Nicotiana/genética , Nicotiana/fisiología , Dermatoglifia del ADN , Repeticiones de Microsatélite , Especificidad de la Especie
14.
Sci Rep ; 9(1): 3124, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816259

RESUMEN

Cucumber mosaic virus (CMV) is among the most important plant virus infections, inducing a variety of disease symptoms. However, the molecular mechanisms underlying plant responses to CMV infection remain poorly understood. In this study, we performed RNA sequencing analysis of tolerant (Taiyan8) and susceptible (NC82) tobacco cultivars on CMV-infected plants, using mock-inoculated plants as a control. The propagation of CMV in inoculated leaves did not show obvious difference between two cultivars, whereas virus accumulation in systemic leaves of Taiyan8 was smaller than those of NC82 at the same time point. We observed 765 and 1,011 differentially expressed genes (DEGs) in Taiyan8 and NC82, respectively, in CMV-inoculated leaves. DEGs related to reactive oxygen species, salicylic acid signal transduction, and plant-pathogen interaction were upregulated or downregulated in Taiyan8, which indicates that defense response pathways to CMV were activated in the tolerant cultivar. In addition, we identified several DEGs related to disease defense and stress resistance showing opposing expression patterns in the two cultivars. Our comparative transcriptome analysis will improve our understanding of the mechanisms of CMV tolerance in plants, and will be of great importance in the molecular breeding of CMV- tolerant genotypes.


Asunto(s)
Cucumovirus/fisiología , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Nicotiana/virología
15.
PLoS One ; 10(7): e0131846, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26161553

RESUMEN

In the modern world, the grain mineral concentration (GMC) in rice (Oryza sativa L.) not only includes important micronutrient elements such as iron (Fe) and zinc (Zn), but it also includes toxic heavy metal elements, especially cadmium (Cd) and lead (Pb). To date, the genetic mechanisms underlying the regulation of GMC, especially the genetic background and G × E effects of GMC, remain largely unknown. In this study, we adopted two sets of backcross introgression lines (BILs) derived from IR75862 (a Zn-dense rice variety) as the donor parent and two elite indica varieties, Ce258 and Zhongguangxiang1, as recurrent parents to detect QTL affecting GMC traits including Fe, Zn, Cd and Pb concentrations in two environments. We detected a total of 22 loci responsible for GMC traits, which are distributed on all 12 rice chromosomes except 5, 9 and 10. Six genetic overlap (GO) regions affecting multiple elements were found, in which most donor alleles had synergistic effects on GMC. Some toxic heavy metal-independent loci (such as qFe1, qFe2 and qZn12) and some regions that have opposite genetic effects on micronutrient (Fe and Zn) and heavy metal element (Pb) concentrations (such as GO-IV) may be useful for marker-assisted biofortification breeding in rice. We discuss three important points affecting biofortification breeding efforts in rice, including correlations between different GMC traits, the genetic background effect and the G × E effect.


Asunto(s)
Hierro/metabolismo , Oryza/genética , Zinc/metabolismo , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Grano Comestible/genética , Grano Comestible/metabolismo , Genes de Plantas , Repeticiones de Microsatélite , Oryza/metabolismo , Sitios de Carácter Cuantitativo
16.
Genet Res (Camb) ; 94(5): 245-53, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23298447

RESUMEN

Two sets of reciprocal introgression lines (ILs) and a population of recombinant inbred lines (RILs) derived from the cross between japonica cultivar Xiushui09 and indica breeding line IR2061-520-6-9 (abbreviated as IR2061) were used to identify QTL for heading date (HD). Phenotyping was conducted in Hainan Island for two winter seasons (2007 and 2009). Nine QTLs were detected in the ILs with Xiushui09 background (XS-ILs), and four of which were repeatedly mapped across 2 years. Five QTLs were identified in the ILs with IR2061 background (IR-ILs), and three of which were commonly detected in 2 years. All commonly detected QTL had the same direction of gene effect. Seven QTL for HD were identified in the RILs in 2009. Only three (25%) QTLs were commonly detected using all the three populations (XS-ILs, IR-ILs and RILs). The number of commonly identified QTLs among populations was related to degree of similarity of their genetic backgrounds, suggesting that the genetic background effect is important for detecting HD QTL. QHd7 and QHd10b stably expressed in different populations and across years thus would be exploited in rice breeding programme. Moreover, lines with both of QHd7 and QHd10b resulted in at least 3 days earlier than lines with only one of them QTL, showing evident pyramiding effect.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Endogamia , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Cruzamiento , Cruzamientos Genéticos , Fenotipo , Recombinación Genética
17.
Genome ; 55(1): 45-55, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22181322

RESUMEN

Effect of genetic background on detection of quantitative trait locus (QTL) governing salinity tolerance (ST) was studied using two sets of reciprocal introgression lines (ILs) derived from a cross between a moderately salinity tolerant japonica variety, Xiushui09 from China, and a drought tolerant but salinity susceptible indica breeding line, IR2061-520-6-9 from the Philippines. Salt toxicity symptoms (SST) on leaves, days to seedling survival (DSS), and sodium and potassium uptake by shoots were measured under salinity stress of 140 mmol/L of NaCl. A total of 47 QTLs, including 26 main-effect QTLs (M-QTLs) and 21 epistatic QTLs (E-QTLs), were identified from the two sets of reciprocal ILs. Among the 26 M-QTLs, only four (15.4%) were shared in the reciprocal backgrounds while no shared E-QTLs were detected, indicating that ST QTLs, especially E-QTLs, were very specific to the genetic background. Further, 78.6% of the M-QTLs for SST and DSS identified in the reciprocal ILs were also detected in the recombinant inbred lines (RILs) from the same cross, which clearly brings out the background effect on ST QTL detection and its utilization in ST breeding. The detection of ILs with various levels of pyramiding of nonallelic M-QTL alleles for ST from Xiushui09 into IR2061-520-6-9 allowed us to further improve the ST in rice.


Asunto(s)
Oryza/genética , Sitios de Carácter Cuantitativo , Cloruro de Sodio/farmacología , China , Cruzamientos Genéticos , Ligamiento Genético , Marcadores Genéticos , Genotipo , Filipinas , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo
18.
Theor Appl Genet ; 123(3): 421-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21556700

RESUMEN

Reproductive period (RP) is an important trait of soybean [Glycine max (L.) Merr.] It is closely related to yield, quality and tolerances to environmental stresses. To investigate the inheritance and photoperiod response of RP in soybean, the F(1), F(2), and F(2:3) populations derived from nine crosses were developed. The inheritance of RP was analyzed through the joint segregation analysis. It was shown that the RP was controlled by one major gene plus polygenes. 181 recombinant inbred lines (RILs) generated from the cross of Xuyong Hongdou × Baohexuan 3 were further used for QTL mapping of RP under normal conditions across 3 environments, using 127 SSR markers. Four QTLs, designated qRP-c-1, qRP-g-1, qRP-m-1 and qRP-m-2, were mapped on C1, G and M linkage groups, respectively. The QTL qRP-c-1 on the linkage group C1 showed stable effect across environments and explained 25.6, 27.5 and 21.4% of the phenotypic variance in Nanjing 2002, Beijing 2003 and Beijing 2004, respectively. Under photoperiod-controlled conditions, qRP-c-1, and two different QTLs designated qRP-l-1 and qRP-o-1, respectively, were mapped on the linkage groups L and O. qRP-o-1 was detected under SD condition and can explained 10.70% of the phenotypic variance. qRP-c-1 and qRP-l-1 were detected under LD condition and for photoperiod sensitivity. The two major-effect QTLs can explain 19.03 and 19.00% of the phenotypic variance, respectively, under LD condition and 16.25 and 14.12%, respectively, for photoperiod sensitivity. Comparative mapping suggested that the two major-effect QTLs, qRP-c-1 and qRP-l-1, might associate with E8 or GmCRY1a and the maturity gene E3 or GmPhyA3, respectively. These results could facilitate our understanding of the inheritance of RP and provide information on marker-assisted breeding for high yield and wide adaptation in soybean.


Asunto(s)
Glycine max/genética , Fotoperiodo , Sitios de Carácter Cuantitativo , Adaptación Fisiológica , Mapeo Cromosómico , Cruzamientos Genéticos , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Flores/genética , Genes de Plantas , Ligamiento Genético , Genética de Población , Herencia Multifactorial , Fenotipo , Reproducción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...