Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 50(2): 520-534, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33336666

RESUMEN

We report the syntheses, structures, magnetic and electrochemical properties of MRhRh metal cores helically wrapped by four dpa- (2,2'-dipyridylamide) ligands. We successfully synthesized the precursor Rh2(dpa)4 (1) in high yield and characterized its structure including its oxidized form (1+) which facilitated the syntheses of this series of metal springs. By the reactions of (1) and the metal ions of group 7 to group 12 (M = Mn(2), Fe(3), Co(4), Ni(5), Cu(6), Pd(8), Pt(9), Ru(10), Ir(11) and Rh(12)), ten MRh2(dpa)4Cl2 complexes were successfully isolated. Note that Cd(7) can only be obtained by the one-pot method. The yield of Rh3(dpa)4Cl2 (12) is also improved by this stepwise method. The oxidized complexes [MRh2(dpa)4Cl2](PF6) (M: Ni(5+), Ru(10+), Ir(11+)) are also synthesized for the studies of electronic structures and magnetic properties. The X-ray diffraction technique is applied to characterize all of their structures. The results of these structural, magnetic, and electrochemical studies provide us with in-depth knowledge and comprehensive insight into metal-metal bonds and interactions for this new series of metal strings. In particular, four metal-metal bonds with short distances are found: Pd-Rh (2.372(13) Å), Pt-Rh (2.385(7) Å), Ru-Rh (2.33(3) Å), and Ir-Rh (2.373(5) Å). The remaining ones show no evidence of covalent metal bonds judging from their metal-metal distances, magnetic behaviour, and redox couples in electrochemical analysis. Besides, two unique tetranuclear MRhRhM(dpa)4X2 (M: Cu+(13) and Ag+(14)) complexes with a Rh2(dpa)4 framework are developed. Four metals are aligned linearly. This coordination mode of metal strings provides a unique synthetic route for constructing longer metal chains from a smaller number of dentate ligands.

2.
ACS Omega ; 5(25): 15620-15630, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32637838

RESUMEN

The electronic and vibrational structures of trinickel metal string complexes [Ni3(dpa)4X2]1-,0,1+ (X = Cl, NCS) were investigated using both theoretical calculations and spectroscopic methods. We used the density functional theory (DFT) method B3LYP*-D3, including less exact exchange energy and the van der Waals interaction of metal ions, to obtain the geometries and vibrational structures, which were found to be in excellent agreement with the experimental data. The ground state of Ni3(dpa)4X2 is an antiferromagnetic (AF) singlet state, and the next state is a quintet state, which was detected using temperature-dependent Raman spectroscopy under a magnetic field. The vibrational structure of the quintet state is nearly identical to that of the AF state, according to the measured Raman spectra, except that the stretching of Ni-Cl is blue-shifted from 282.5 cm-1 in the AF state to 283.8 cm-1 in the quintet state. Two oxidized Ni3 complexes were found to have [Ni3]7+ cores, the doublet [Ni3(dpa)4]3+ without axial ligands and the quartet [Ni3(dpa)4X2]+. Complex [Ni3(dpa)4X2]-, which was produced from a reduction reaction by gold nanoparticles at room temperature, consists of a quartet state as the ground state and a doublet state lying nearby.

3.
Dalton Trans ; 49(20): 6635-6643, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32367097

RESUMEN

We report the synthesis of a novel heteroheptanuclear metal string complex (HMSC) [Ni3Ru2Ni2(µ7-teptra)4(NCS)2](PF6) 1 supported by tetra-pyridyl-tri-amine (H3teptra) ligands. We employed X-ray diffraction and other spectroscopic techniques to characterize the complex. The observed remarkably short Ru-Ru distance of 2.2499(3) Å for 1 is indicative of a unique metal-metal interaction in the mixed-valence [Ru2]5+ (S = 3/2) unit. The complex exhibits a relatively high magnetic moment value of 4.55 B.M. at 4 K, which increases rapidly to 6.00 B.M. at 30 K and remains at 6.11 B.M. from 50 to 300 K as shown by SQUID measurements, indicating a high spin (S≥ 3/2) system which is further supported by the analyses of EPR spectra at low temperatures. These magnetic behaviors can be ascribed to the result of spin-exchange interactions among multi-spin centers.

4.
Dalton Trans ; 49(22): 7299-7303, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32343295

RESUMEN

Five heterometallic pentanuclear metal strings were prepared by stepwise synthesis from two to three and four kinds of metals aligned in one chain. In particular, NiPtCo2Pd(tpda)4Cl2 (5) possesses four different metals, and the SQUID measurement shows that Ni2+ is the only magnetically active center. Besides, the shortest Co(ii)-Co(ii) single bond (2.105(9) Å), so far, is reported.

5.
ACS Omega ; 4(3): 5327-5334, 2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459703

RESUMEN

The facet-dependent redox reactions of diruthenium metal-string complexes by gold nanoparticles (AuNPs) are explored by using the surface-enhanced Raman scattering (SERS) technique. Gold nano-rhombic dodecahedrons (AuRDs), gold nanocubes (AuNCs), and gold octahedrons (AuOhs) with exclusive facets {110}, {100}, and {111}, respectively, were synthesized. These AuNPs linked face-to-face by metal-string complexes Ru2M(dpa)4Cl2 (dpa = dipyridyl amino, M = Ni, Cu) with chloride axial ligands serve as both SERS substrates and reducing agents in the reactions. We employ the diruthenium core in these complexes with multiple redox states to study the reduction ability of varied AuNP facets upon plasmonic excitation. In Ru2Ni(dpa)4Cl2, the Ru-Ru stretching mode νRu-Ru str. lies at 327 cm-1 on the SERS substrate AuOh, but this band shifts to 313 cm-1 on the AuRD and AuNC. The diruthenium moiety was reduced to [Ru2]4+ by the AuRD facet {110} and the AuNC {100}. The gold nanorods in the solution prepared with metal-string complexes bridging head-to-head on {111} facets were used for the SERS substrate. The SERS curves of the complexes in these self-assembled head-to-head rods display νRu-Ru str. at 327 cm-1, which is assigned to having an [Ru2]5+ core. Hence, facets {110} and {100} have a reduction reactivity greater than that of {111}. In Ru2Cu(dpa)4Cl2, the νRu-Ru str. is observed to lie at 312 cm-1 on AuRD, but shifts to 320 cm-1 on the AuNC and AuOh. In the latter cases, the diruthenium moiety was reduced to having a charge of 4+ with electronic configuration π*2δ*2, whereas the former case band at 312 cm-1 with a weaker Ru-Ru bonding is also attributed to [Ru2]4+ but with electron configuration π*4. π*4 lies at an energy greater than π*2δ*2. The electrochemical SERS spectra of diruthenium complexes were recorded to verify their oxidation states. Conclusively, these results yield the reduction reactivity of the following facet: {110} > {100} > {111}. According to the results of the redox reactions, the valence states of the diruthenium metal-string complexes are verified. In the [Ru2] n+ core, n = 4 π*4, 4 π*2δ*2, 5 π*2δ*, and 6 π*δ*, and the νRu-Ru str. is 312, 320, 327, and 337 cm-1, respectively.

6.
Dalton Trans ; 48(31): 11732-11742, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31298242

RESUMEN

Treatment of [Ru]-C[triple bond, length as m-dash]CPh (1, [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with trimethylsilyl azide afforded the cationic nitrile complex {[Ru]NCCH2Ph}[N3] (2) and the further cycloaddition of 2 with trimethylsilyl azide at 60 °C afforded the N(2)-bound tetrazolato complex [Ru]N4CCH2Ph (3). The regiospecific alkylation of 3 gave a series of cationic N(2)-bound N(4)-alkylated-5-benzyl tetrazolato complexes {[Ru]N4(CH2R)CCH2Ph}[Br] (4a, R = C6F5; 4b, R = Ph; 4c, R = 4-CN-C6H4; 4d, R = 2,6-F2-C6H3; 4e, R = 6-CH2Br-C5NH3) and the subsequent cleavage of the Ru-N bond of 4a-4e gave N(1)-alkylated-5-benzyl tetrazoles N4(CH2R)CCH2Ph (5a-5e) in good to excellent yields and [Ru]-Br, which, on reacting with phenylacetylene, resulted in the formation of 1 thus forming a reaction cycle. The structures of 2, 3, 4a, 4c and 5a were confirmed by single-crystal X-ray diffraction analysis.

7.
Chemistry ; 24(45): 11649-11666, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-29889320

RESUMEN

The heterotrimetallic complexes [FeMFe(dpa)4 Cl2 ] (M=Ni (1), Pd (2), and Pt (3); dpa- =dipyridylamido) featuring two high-spin iron centers linked by Group 10 metals were synthesized and their physical properties were investigated. Oxidation of 1-3 with suitable oxidants in CH2 Cl2 solution yielded the mixed-valent species [1]+/2+ -[3]+/2+ . The solution properties of [1]0/+/2+ -[3]0/+/2+ were characterized by 1 H NMR and UV/Vis/NIR spectroscopy as well as spectroelectrochemisty. The mixed-valent states of [1]+ -[3]+ obtained by electrochemical or chemical oxidation are classified as class II valence delocalization. The solid-state structures of 1-3, [1]+ , [3]+ , and [1]2+ were determined by single-crystal X-ray diffraction analysis, exhibiting a linear metal framework with an approximate D4 symmetry. The spin states and magnetic properties were studied by using SQUID magnetometry, EPR and Mössbauer spectroscopy, and DFT calculations. Antiferromagnetic interactions between terminal high-spin iron centers are present within [1]0/+/2+ -[3]0/+/2+ and the |J| values increase with the central metal ion changing from Ni to Pt. The DFT calculations reproduce the antiferromagnetic coupling and ascribe it to a σ-type exchange pathway. The substitution of the central metal not only influences the spin-spin interactions but also the degree of electronic delocalization between the terminal iron sites along the Fe-M-Fe chains.

8.
Dalton Trans ; 47(5): 1422-1434, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29292429

RESUMEN

The CoRu2(dpa)4Cl2 (1) (dpa: 2,2'-dipyridylamide) is synthesized by the reaction of Ru2(OAc)4Cl and Co3(dpa)4Cl2. By mixing 1 with NH3, Co2+ can be removed and result in the formation of unique binuclear complex 4,0-Ru2(dpa)4Cl (2) featuring one coordination pocket supported by free pyridine groups. Hence, this complex can act as an outstanding precursor for the formation of heterotrimetallic chains with MRu2 cores. A series of M-Ru25+ complexes (M = Co2+ (3), Ag+ (4), Mn2+ (5), Fe2+ (6), Zn2+ (7), Cd2+ (8), Pd2+ (9), Rh2+ (10), and Ir2+ (11)) were prepared and isolated, representing the most complete series of heterotrimetallic chains to date. All these metal string complexes are in a linear trimetallic framework helically wrapped by four dpa- ligands, characterized by X-ray diffraction measurements. The bending of the trinuclear metal cores in RhRu2 (10) and IrRu2 (11) (∠Ru-Ru-Rh: 167.58° and ∠Ru-Ru-Ir: 167.61°) indicates that a heterometallic metal-metal bonds (Ru-Rh; Ru-Ir) are generated. The studies from DFT calculation of 10 and 11 coincide with the experimental results. Furthermore, the MRu25+ distances are regulated by the factors including the bonding force of M-pyridyl and the static repulsion between M and Ru25+ unit. Interestingly, the trend for these distances is in line with that observed in trans-M(py)4Cl2 complexes.

9.
Inorg Chem ; 53(23): 12489-98, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25383889

RESUMEN

A combined experimental and theoretical electron density study of the shortest trichromium metal wire, Cr3(dpa)4Cl2·(C2H5OC2H5)(x)(CH2Cl2)(1-x) (1, dpa = bis(2-pyridyl)amido), is reported. High resolution X-ray diffraction data has been collected both at 100 K using a conventional X-ray source (DS1) and at 15 K using a synchrotron X-ray source (DS2). The linear chromium string is terminated by Cl(-) ions at both ends, and each Cr atom is also coordinated by four N atoms from bridging dpa ligands. The two Cr-Cr bond distances are unequal at 100 K (with d(Cr1-Cr2) being 0.029 Å shorter than d(Cr2-Cr3)) but at 15 K they are almost equal (0.002 Å difference). Analysis of the slightly elongated thermal ellipsoids of the Cr2 atom suggests that it is not due to disorder, but the presence of a shallow potential energy surface. Laplacian maps clearly show local valence shell charge concentration (VSCC) in the electron density along the bisector of the equatorial Cr-N bonds. Integration over the atomic basins indicates that Cr2 has smaller atomic charge and volume than Cr1 and Cr3. The topological characterization of the Cr-Cr bonds indicates partly covalent characters with electron density at the bond critical point of ∼0.3 e Å(-3) and negative total energy density. The delocalization index of Cr-Cr is 0.8 for Cr1-Cr2 and 0.08 for Cr1-Cr3. Second-order perturbation analysis shows high stabilization energy of the Cr-Cr bonds (E(2) ∼ 190 kcal mol(-1)). Delocalization indices and source function and natural bond orbital analyses are all indicative of localized Cr-Cr bonding interactions.

10.
Chem Commun (Camb) ; 49(72): 7938-40, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-23900667

RESUMEN

This communication provides a practical strategy for the synthesis of heterotrimetallic extended metal atom chains with supported dpa(-) ligands. The transformation of the CoCoRh to a NiCoRh trinuclear complex can be achieved by direct metallic replacement. Furthermore, the first (CoRh)(4+) metal-metal bond is described here.

11.
Dalton Trans ; 41(11): 3166-73, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22302123

RESUMEN

The synthesis, crystal structure, magnetic properties, and single-molecule conductance of two new trinuclear metal string complexes, [Ni(3)(dzp)(4)(NCS)(2)] (2) and [Co(3)(dzp)(4)(NCS)(2)] (3), containing the rigid Hdzp ligand (1, 1,9-diazaphenoxazine) are reported. X-ray structural analyses show that compounds 2 and 3 exhibit smaller torsion angles and longer metal-metal distances than those exhibited by the corresponding dpa(-) analogues (dpa(-) = dipyridylamido anion) due to the rigidity of Hdzp ligands. The longer metal-metal distance observed for 2 and 3 results in variations in their magnetic properties. The exchange interaction (J = -160 cm(-1)) between two high spin (HS) Ni(II) ions in 2 decreases slightly in comparison with those of trinickel dpa(-) analogues. The doublet-quartet gap of 3 is smaller than that of [Co(3)(dpa)(4)(NCS)(2)] (4), which causes compound 3 to show spin-crossover behavior even at low temperature.

12.
J Chromatogr B Analyt Technol Biomed Life Sci ; 868(1-2): 95-101, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18495561

RESUMEN

A sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and evaluated for the determination of pitavastatin in human plasma and urine. Samples were extracted using solid-phase extraction (SPE). The major benefit of the present method was the high sensitivity, with a lower limit of quantification (LLOQ) of 0.08 ng/mL. Pitavastatin and internal standard (IS, rosuvastatin) were separated on a C(18) column with a mobile phase consisted of methanol/water (75:25, v/v) with 0.05% formic acid. Drug and IS were detected by LC/MS/MS with positive electrospray ionization (ESI). Accuracy and precision for the assay were determined by calculating the intra- and inter-batch variation of quality control (QC) samples at three concentration levels, with relative standard deviations (R.S.D.s) of less than 15%. The developed method was successfully applied to determine pitavastatin in human plasma and urine, and was proved to be suitable for use in Phase I clinical pharmacokinetic study after oral administration of pitavastatin (1, 2 and 4 mg) in healthy Chinese volunteers.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Quinolinas/farmacocinética , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Adulto , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/sangre , Inhibidores de Hidroximetilglutaril-CoA Reductasas/orina , Masculino , Quinolinas/sangre , Quinolinas/orina , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...