Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2774, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555288

RESUMEN

The rational design of carbon-supported transition-metal single-atom catalysts requires the precise arrangement of heteroatoms within the single-atom catalysts. However, achieving this design is challenging due to the collapse of the structure during the pyrolysis. Here, we introduce a topological heteroatom-transfer strategy to prevent the collapse and accurately control the P coordination in carbon-supported single-atom catalysts. As an illustration, we have prepared self-assembled helical fibers with encapsulated cavities. Within these cavities, adjustable functional groups can chelate metal ions (Nx···Mn+···Oy), facilitating the preservation of the structure during the pyrolysis based phosphidation. This process allows for the transfer of heteroatoms from the assembly into single-atom catalysts, resulting in the precise coordination tailoring. Notably, the Co-P2N2-C catalyst exhibits electrocatalytic performance as a non-noble metal single-atom catalyst for alkaline hydrogen evolution, attaining a current density of 100 mA cm-2 with an overpotential of only 131 mV.

2.
ChemSusChem ; 17(10): e202301452, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38224562

RESUMEN

Control over product selectivity of the electrocatalytic CO2 reduction reaction (CO2RR) is a crucial challenge for the sustainable production of carbon-based chemical feedstocks. In this regard, single-atom catalysts (SACs) are promising materials due to their tunable coordination environments, which could enable tailored catalytic activities and selectivities, as well as new insights into structure-activity relationships. However, direct evidence for selectivity control via systematic tuning of the SAC coordination environment is scarce. In this work, we have synthesized two differently coordinated Bi SACs anchored to the same host material (carbon black) and characterized their CO2RR activities and selectivities. We find that oxophilic, oxygen-coordinated Bi atoms produce HCOOH, while nitrogen-coordinated Bi atoms generate CO. Importantly, use of the same support material assured that alternation of the coordination environment is the dominant factor for controlling the CO2RR product selectivity. Overall, this work demonstrates the structure-activity relationship of Bi SACs, which can be utilized to establish control over CO2RR product distributions, and highlights the promise for engineering atomic coordination environments of SACs to tune reaction pathways.

3.
Chem Sci ; 15(3): 1123-1131, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38239697

RESUMEN

Exploring economical, efficient, and stable electrocatalysts for the seawater hydrogen evolution reaction (HER) is highly desirable but is challenging. In this study, a Mo cation doped Ni0.85Se/MoSe2 heterostructural electrocatalyst, Mox-Ni0.85Se/MoSe2, was successfully prepared by simultaneously doping Mo cations into the Ni0.85Se lattice (Mox-Ni0.85Se) and growing atomic MoSe2 nanosheets epitaxially at the edge of the Mox-Ni0.85Se. Such an Mox-Ni0.85Se/MoSe2 catalyst requires only 110 mV to drive current densities of 10 mA cm-2 in alkaline simulated seawater, and shows almost no obvious degradation after 80 h at 20 mA cm-2. The experimental results, combined with the density functional theory calculations, reveal that the Mox-Ni0.85Se/MoSe2 heterostructure will generate an interfacial electric field to facilitate the electron transfer, thus reducing the water dissociation barrier. Significantly, the heteroatomic Mo-doping in the Ni0.85Se can regulate the local electronic configuration of the Mox-Ni0.85Se/MoSe2 heterostructure catalyst by altering the coordination environment and orbital hybridization, thereby weakening the bonding interaction between the Cl and Se/Mo. This synergistic effect for the Mox-Ni0.85Se/MoSe2 heterostructure will simultaneously enhance the catalytic activity and durability, without poisoning or corrosion of the chloride ions.

4.
ACS Nano ; 18(5): 4343-4351, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38277336

RESUMEN

The confinement of electrons in one-dimensional (1D) space highlights the prominence of the role of electron interactions or correlations, leading to a variety of fascinating physical phenomena. The quasi-1D electron states can exhibit a unique spin texture under spin-orbit interaction (SOI) and thus could generate a robust spin current by forbidden electron backscattering. Direct detection of such 1D spin or SOI information, however, is challenging due to complicated techniques. Here, we identify an anomalous planar Hall effect (APHE) in the magnetotransport of quasi-1D van der Waals (vdW) topological materials as exemplified by Bi4Br4, which arises from the quantum interference correction of 1D weak antilocalization (WAL) to the ordinary planar Hall effect and demonstrates a deviation from the usual sine and cosine curves. The occurrence of 1D WAL is correlated to the line-shape Fermi surface and persistent spin texture of (100) topological surface states of Bi4Br4, as revealed by both our angle-resolved photoemission spectroscopy and first-principles calculations. By generalizing the observation of APHE to other non-vdW bulk materials, this work provides a possible characteristic of magnetotransport for identifying the spin/SOI information and quantum interference behavior of 1D states in 3D topological material.

5.
ACS Nano ; 18(1): 551-559, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38112383

RESUMEN

The exorbitant cost of Pt-based electrocatalysts and the poor durability of non-noble metal electrocatalysts for proton exchange membrane fuel cells limited their practical application. Here, FeN4 active sites electronically coupled with PtFe alloys (PtFe-FeNC) were successfully prepared by a vapor deposition strategy as an ultralow Pt loading (0.64 wt %) hybrid electrocatalyst. The FeN4 sites on the FeNC matrix are able to effectively anchor the PtFe alloys, thus inhibiting their aggregation during long-life cycling. These PtFe alloys, in turn, can efficiently restrain the leaching of the FeN4 sites from the FeNC matrix. Thus, the PtFe-FeNC demonstrated an improved Pt mass activity of 2.33 A mgPt-1 at 0.9 V toward oxygen reduction reaction, which is 12.9 times higher than that of commercial Pt/C (0.18 A mgPt-1). It demonstrated great stability, with the Pt mass activity decreasing by only 9.4% after 70,000 cycles. Importantly, the fuel cell with an ultralow Pt loading in the cathode (0.012 mgPt cm-2) displays a high Pt mass activity of 1.75 A mgPt-1 at 0.9 ViR-free, which is significantly better than commercial MEA (0.25 A mgPt-1). Interestingly, PtFe-FeNC catalysts possess enhanced durability, exhibiting a 12.5% decrease in peak power density compared to the 51.7% decrease of FeNC.

6.
ACS Appl Mater Interfaces ; 15(39): 46064-46073, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37738356

RESUMEN

Heat treatment-induced nanocrystallization of amorphous precursors is a promising method for nanostructuring half-Heusler compounds as it holds significant potential in the fabrication of intricate and customizable nanostructured materials. To fully exploit these advantages, a comprehensive understanding of the crystallization behavior of amorphous precursors under different crystallization conditions is crucial. In this study, we investigated the crystallization behavior of the amorphous NbCo1.1Sn alloy at elevated temperatures (783 and 893 K) using transmission electron microscopy and atom probe tomography. As a result, heat treatment at 893 K resulted in a significantly finer grain structure than heat treatment at 783 K owing to the higher nucleation rate at 893 K. At both temperatures, the predominant phase was a half-Heusler phase, whereas the Heusler phase, associated with Co diffusion, was exclusively observed at the specimen annealed at 893 K. The Debye-Callaway model supports that the lower lattice thermal conductivity of NbCo1.1Sn annealed at 893 K is primarily attributed to the formation of Heusler nanoprecipitates rather than a finer grain size. The experimental findings of this study provide valuable insights into the nanocrystallization of amorphous alloys for enhancing thermoelectric properties.

7.
Chem Commun (Camb) ; 59(81): 12148-12151, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37740332

RESUMEN

The electrochemical reduction of oxygen via the 2e pathway is an environmentally friendly approach to the electrosynthesis of H2O2. Nevertheless, its sluggish kinetics and limited selectivity hinder its practical application. Herein, single Fe atoms anchored on graphene oxide (SA Fe/GO) with Fe-O4-C sites are developed as an efficient electrocatalyst for the electro-synthesis of H2O2. These Fe-O4-C site active centres could efficiently enhance the activity and selectivity towards 2e electrochemical oxygen reduction in an alkaline environment. The newly-developed SA Fe/GO electrocatalyst demonstrates exceptional electrochemical performance, exhibiting impressive activity with an onset potential of 0.90 and H2O2 production of 0.60 mg cm-2 h-1 at 0.4 V. Remarkably, it achieves a remarkable H2O2 selectivity of over 95.5%.

8.
Nat Commun ; 14(1): 4964, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587124

RESUMEN

Weak topological insulators, constructed by stacking quantum spin Hall insulators with weak interlayer coupling, offer promising quantum electronic applications through topologically non-trivial edge channels. However, the currently available weak topological insulators are stacks of the same quantum spin Hall layer with translational symmetry in the out-of-plane direction-leading to the absence of the channel degree of freedom for edge states. Here, we study a candidate weak topological insulator, Bi4Br2I2, which is alternately stacked by three different quantum spin Hall insulators, each with tunable topologically non-trivial edge states. Our angle-resolved photoemission spectroscopy and first-principles calculations show that an energy gap opens at the crossing points of different Dirac cones correlated with different layers due to the interlayer interaction. This is essential to achieve the tunability of topological edge states as controlled by varying the chemical potential. Our work offers a perspective for the construction of tunable quantized conductance devices for future spintronic applications.

9.
Mater Horiz ; 10(5): 1479-1538, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37040188

RESUMEN

Li7La3Zr2O12 (LLZO)-based solid-state Li batteries (SSLBs) have emerged as one of the most promising energy storage systems due to the potential advantages of solid-state electrolytes (SSEs), such as ionic conductivity, mechanical strength, chemical stability and electrochemical stability. However, there remain several scientific and technical obstacles that need to be tackled before they can be commercialised. The main issues include the degradation and deterioration of SSEs and electrode materials, ambiguity in the Li+ migration routes in SSEs, and interface compatibility between SSEs and electrodes during the charging and discharging processes. Using conventional ex situ characterization techniques to unravel the reasons that lead to these adverse results often requires disassembly of the battery after operation. The sample may be contaminated during the disassembly process, resulting in changes in the material properties within the battery. In contrast, in situ/operando characterization techniques can capture dynamic information during cycling, enabling real-time monitoring of batteries. Therefore, in this review, we briefly illustrate the key challenges currently faced by LLZO-based SSLBs, review recent efforts to study LLZO-based SSLBs using various in situ/operando microscopy and spectroscopy techniques, and elaborate on the capabilities and limitations of these in situ/operando techniques. This review paper not only presents the current challenges but also outlines future developmental prospects for the practical implementation of LLZO-based SSLBs. By identifying and addressing the remaining challenges, this review aims to enhance the comprehensive understanding of LLZO-based SSLBs. Additionally, in situ/operando characterization techniques are highlighted as a promising avenue for future research. The findings presented here can serve as a reference for battery research and provide valuable insights for the development of different types of solid-state batteries.

10.
Light Sci Appl ; 12(1): 67, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36882401

RESUMEN

Metal halide perovskites possess intriguing optoelectronic properties, however, the lack of precise control of on-chip fabrication of the large-scale perovskite single crystal arrays restricts its application in integrated devices. Here, we report a space confinement and antisolvent-assisted crystallization method for the homogeneous perovskite single crystal arrays spanning 100 square centimeter areas. This method enables precise control over the crystal arrays, including different array shapes and resolutions with less than 10%-pixel position variation, tunable pixel dimensions from 2 to 8 µm as well as the in-plane rotation of each pixel. The crystal pixel could serve as a high-quality whispering gallery mode (WGM) microcavity with a quality factor of 2915 and a threshold of 4.14 µJ cm-2. Through directly on-chip fabrication on the patterned electrodes, a vertical structured photodetector array is demonstrated with stable photoswitching behavior and the capability to image the input patterns, indicating the potential application in the integrated systems of this method.

11.
Small ; 19(15): e2206404, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36610052

RESUMEN

Atomic understanding of a chemical reaction can realize the programmable design and synthesis of desired products with specific compositions and structures. Through directly monitoring the phase transition and tracking the dynamic evolution of atoms in a chemical reaction, in situ transmission electron microscopy (TEM) techniques offer the feasibility of revealing the reaction kinetics at the atomic level. Nevertheless, such investigation is quite challenging, especially for reactions involving multi-phase and complex interfaces, such as the widely adopted carbothermal reduction (CTR) reactions. Herein, in-situ TEM is applied to monitor the CTR of Co3 O4 nanocubes on reduced graphene oxide nanosheets. Together with the first-principle calculation, the migration route of Co atoms during the phase transition of the CTR reaction is revealed. Meanwhile, the interfacial edge-dislocations/stress-gradient is identified as a result of the atomistic diffusion, which in turn can affect the morphology variation of the reactants. Accordingly, controllable synthesis of Co-based nanostructure with a desirable phase and structure has been achieved. This work not only provides atomic kinetic insight into CTR reactions but also offers a novel strategy for the design and synthesis of functional nanostructures for emerging energy technologies.

12.
Adv Mater ; 35(1): e2206828, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36308045

RESUMEN

Room-temperature sodium-sulfur (RT-Na/S) batteries possess high potential for grid-scale stationary energy storage due to their low cost and high energy density. However, the issues arising from the low S mass loading and poor cycling stability caused by the shuttle effect of polysulfides seriously limit their operating capacity and cycling capability. Herein, sulfur-doped graphene frameworks supporting atomically dispersed 2H-MoS2 and Mo1 (S@MoS2 -Mo1 /SGF) with a record high sulfur mass loading of 80.9 wt.% are synthesized as an integrated dual active sites cathode for RT-Na/S batteries. Impressively, the as-prepared S@MoS2 -Mo1 /SGF display unprecedented cyclic stability with a high initial capacity of 1017 mAh g-1 at 0.1 A g-1 and a low-capacity fading rate of 0.05% per cycle over 1000 cycles. Experimental and computational results including X-ray absorption spectroscopy, in situ synchrotron X-ray diffraction and density-functional theory calculations reveal that atomic-level Mo in this integrated dual-active-site forms a delocalized electron system, which could improve the reactivity of sulfur and reaction reversibility of S and Na, greatly alleviating the shuttle effect. The findings not only provide an effective strategy to fabricate high-performance dual-site cathodes, but also deepen the understanding of their enhancement mechanisms at an atomic level.

14.
Elife ; 112022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35959892

RESUMEN

Cohesin folds chromosomes via DNA loop extrusion. Cohesin-mediated chromosome loops regulate transcription by shaping long-range enhancer-promoter interactions, among other mechanisms. Mutations of cohesin subunits and regulators cause human developmental diseases termed cohesinopathy. Vertebrate cohesin consists of SMC1, SMC3, RAD21, and either STAG1 or STAG2. To probe the physiological functions of cohesin, we created conditional knockout (cKO) mice with Stag2 deleted in the nervous system. Stag2 cKO mice exhibit growth retardation, neurological defects, and premature death, in part due to insufficient myelination of nerve fibers. Stag2 cKO oligodendrocytes exhibit delayed maturation and downregulation of myelination-related genes. Stag2 loss reduces promoter-anchored loops at downregulated genes in oligodendrocytes. Thus, STAG2-cohesin generates promoter-anchored loops at myelination-promoting genes to facilitate their transcription. Our study implicates defective myelination as a contributing factor to cohesinopathy and establishes oligodendrocytes as a relevant cell type to explore the mechanisms by which cohesin regulates transcription.


Asunto(s)
Proteínas de Ciclo Celular , Oligodendroglía , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Ratones , Mutación , Oligodendroglía/metabolismo
15.
Nanotechnology ; 33(44)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35878519

RESUMEN

Liquid phase transmission electron microscopy (TEM) provides a useful means to study a wide range of dynamics in solution with near-atomic spatial resolution and sub-microsecond temporal resolution. However, it is still a challenge to control the chemical environment (such as the flow of liquid, flow rate, and the liquid composition) in a liquid cell, and evaluate its effect on the various dynamic phenomena. In this work, we have systematically demonstrated the flow performance of anin situliquid TEM system, which is based on 'on-chip flow' driven by external pressure pumps. We studied the effects of different chemical environments in the liquid cell as well as the electrochemical potential on the deposition and dissolution behavior of Cu crystals. The results show that uniform Cu deposition can be obtained at a higher liquid flow rate (1.38µl min-1), while at a lower liquid flow rate (0.1µl min-1), the growth of Cu dendrites was observed. Dendrite formation could be further promoted byin situaddition of foreign ions, such as phosphates. The generality of this technique was confirmed by studying Zn electrodeposition. Our direct observations not only provide new insights into understanding the nucleation and growth but also give guidelines for the design and synthesis of desired nanostructures for specific applications. Finally, the capability of controlling the chemical environment adds another dimension to the existing liquid phase TEM technique, extending the possibilities to study a wide range of dynamic phenomena in liquid media.

16.
Research (Wash D C) ; 2022: 9762401, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35425903

RESUMEN

The structure of thermoelectric materials largely determines the thermoelectric characteristics. Hence, a better understanding of the details of the structural transformation process/conditions can open doors for new applications. In this study, the structural transformation of PbTe (a typical thermoelectric material) is studied at the atomic scale, and both nucleation and growth are analyzed. We found that the phase transition mainly occurs at the surface of the material, and it is mainly determined by the surface energy and the degree of freedom the atoms have. After exposure to an electron beam and high temperature, high-density crystal-nuclei appear on the surface, which continue to grow into large particles. The particle formation is consistent with the known oriented-attachment growth mode. In addition, the geometric structure changes during the transformation process. The growth of nanoparticles is largely determined by the van der Waals force, due to which adjacent particles gradually move closer. During this movement, as the relative position of the particles changes, the direction of the interaction force changes too, which causes the particles to rotate by a certain angle.

17.
Nat Commun ; 13(1): 1565, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322022

RESUMEN

Transition metal dissolution in cathode active material for Li-based batteries is a critical aspect that limits the cycle life of these devices. Although several approaches have been proposed to tackle this issue, this detrimental process is not yet overcome. Here, benefitting from the knowledge developed in the semiconductor research field, we apply an epitaxial method to construct an atomic wetting layer of LaTMO3 (TM = Ni, Mn) on a LiNi0.5Mn1.5O4 cathode material. Experimental measurements and theoretical analyses confirm a Stranski-Krastanov growth, where the strained wetting layer forms under thermodynamic equilibrium, and it is self-limited to monoatomic thickness due to the competition between the surface energy and the elastic energy. Being atomically thin and crystallographically connected to the spinel host lattices, the LaTMO3 wetting layer offers long-term suppression of the transition metal dissolution from the cathode without impacting its dynamics. As a result, the epitaxially-engineered cathode material enables improved cycling stability (a capacity retention of about 77% after 1000 cycles at 290 mA g-1) when tested in combination with a graphitic carbon anode and a LiPF6-based non-aqueous electrolyte solution.

18.
Cell Rep ; 38(7): 110395, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172133

RESUMEN

Aneuploidy, defective differentiation, and inactivation of the tumor suppressor TP53 all occur frequently during tumorigenesis. Here, we probe the potential links among these cancer traits by inactivating TP53 in human embryonic stem cells (hESCs). TP53-/- hESCs exhibit increased proliferation rates, mitotic errors, and low-grade structural aneuploidy; produce poorly differentiated immature teratomas in mice; and fail to differentiate into neural progenitor cells (NPCs) in vitro. Genome-wide CRISPR screen reveals requirements of ciliogenesis and sonic hedgehog (Shh) pathways for hESC differentiation into NPCs. TP53 deletion causes abnormal ciliogenesis in neural rosettes. In addition to restraining cell proliferation through CDKN1A, TP53 activates the transcription of BBS9, which encodes a ciliogenesis regulator required for proper Shh signaling and NPC formation. This developmentally regulated transcriptional program of TP53 promotes ciliogenesis, restrains Shh signaling, and commits hESCs to neural lineages.


Asunto(s)
Linaje de la Célula , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Organogénesis , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Secuencias de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Genoma Humano , Humanos , Ratones Endogámicos NOD , Ratones SCID , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Teratoma/patología , Proteína p53 Supresora de Tumor/química
19.
Nano Lett ; 21(14): 6117-6123, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34279960

RESUMEN

Heavy Fermion (HF) states emerge in correlated quantum materials due to the intriguing interplay between localized magnetic moments and itinerant electrons but rarely appear in 3d-electron systems due to high itinerancy of d-electrons. Here, an anomalous enhancement of Kondo screening is observed at the Kondo hole of local Fe vacancies in Fe3GeTe2 which is a recently discovered 3d-HF system featuring Kondo lattice and two-dimensional itinerant ferromagnetism. An itinerant Kondo-Ising model is established to reproduce the experimental results and provides insight into the competition between Ising ferromagnetism and Kondo screening. Our work explains the microscopic origin of the d-electron HF states in Fe3GeTe2 and inspires future studies of the enriched quantum many-body effects with Kondo holes.

20.
Small ; 17(26): e2100732, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34080772

RESUMEN

The rational synthesis of single-layer noble metal directly anchored on support materials is an elusive target to accomplish for a long time. This paper reports well-defined single-layer Pt (Pt-SL) clusters anchored on ultrathin TiO2 nanosheets-as a new frontier in electrocatalysis. The structural evolution of Pt-SL/TiO2 via self-assembly of single Pt atoms (Pt-SA) is systematically recorded. Significantly, the Pt atoms of Pt-SL/TiO2 possess a unique electronic configuration with PtPt covalent bonds surrounded by abundant unpaired electrons. This Pt-SL/TiO2 catalyst presents enhanced electrochemical performance toward diverse electrocatalytic reactions (such as the hydrogen evolution reaction and the oxygen reduction reaction) compared with Pt-SA, multilayer Pt nanoclusters, and Pt nanoparticles, suggesting an efficient new type of catalyst that can be achieved by constructing single-layer atomic clusters on supports.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...