Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol J ; 19(4): e2400050, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651271

RESUMEN

Hepatocellular carcinoma (HCC) is a digestive tract cancer with high mortality and poor prognosis, especially in China. Current chemotherapeutic drugs lead to poor prognosis, low efficacy, and high side effects due to weak targeting specificity and rapidly formed multidrug resistance (MDR). Based on the previous studies on the doxorubicin (DOX) formulation for cancer targeting therapy, we developed a novel DOX delivery formulation for the targeting chemotherapy of HCC and DOX resistant HCC. HCSP4 was previously screened and casein kinase 2α (CK2α) was predicted as its specific target on HCC cells in our lab. In the study, miR125a-5p was firstly predicted as an MDR inhibiting miRNA, and then CK2α was validated as the target of HCSP4 and miR125a-5p using CK2α-/-HepG2 cells. Based on the above, an HCC targeting and MDR inhibiting DOX delivery liposomal formulation, HCSP4/Lipo-DOX/miR125a-5p was synthesized and tested for its HCC therapeutic efficacy in vitro. The results showed that the liposomal DOX delivery formulation targeted to HCC cells specifically and sensitively, and presented the satisfied therapeutic efficacy for HCC, particularly for DOX resistant HCC. The potential therapeutic mechanism of the DOX delivery formulation was explored, and the formulation inhibited the expression of MDR-relevant genes including ATP-binding cassette subfamily B member 1 (ABCB1, also known as P-glycoprotein), ATP-binding cassette subfamily C member 5 (ABCC5), enhancer of zeste homolog 2 (EZH2), and ATPase Na+/K+ transporting subunit beta 1 (ATP1B1). Our study presents a novel targeting chemotherapeutic drug formulation for the therapy of HCC, especially for drug resistant HCC, although it is primarily and needs further study in vivo, but provided a new strategy for the development of novel anticancer drugs.


Asunto(s)
Carcinoma Hepatocelular , Quinasa de la Caseína II , Doxorrubicina , Resistencia a Antineoplásicos , Liposomas , Neoplasias Hepáticas , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Liposomas/química , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/antagonistas & inhibidores , Células Hep G2 , Resistencia a Antineoplásicos/efectos de los fármacos , Sistemas de Liberación de Medicamentos , MicroARNs/genética
2.
Biotechnol Lett ; 44(8): 951-960, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35771408

RESUMEN

OBJECTIVES: Ovarian cancer is one of the most fatal gynecological malignancies. It is emergently needed to select a novel molecular fragment as a targeting element for the future development of molecular imaging diagnosis and targeting chemotherapy to ovarian cancer. RESULTS: After five rounds of biopanning, a total of 44 positive phage clones were selected from final phage displayed peptide library. Nine consensus sequences were found based on the assay of sequencing results, then one clone of each consensus group was characterized and identified further by immunofluorescence assay. The result showed the phage clone R20 presents best targeting capacity. Then we synthesized peptide (OSP2) clone R20 displayed, it was characterized with high specificity and sensitivity binding to human ovarian cancer by a tissue chip assay. The target of OSP2 was predicted and docked as human carbonic anhydrase XII (CA12), an important protein usually deregulated in cancer. CONCLUSIONS: Taken together, OSP2 and its target indicate a novel investigation way in future to develop novel agent or drug delivery formulation for molecular imaging diagnosis and targeting chemotherapy of ovarian cancer.


Asunto(s)
Bacteriófagos , Neoplasias Ováricas , Bacteriófagos/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Biblioteca de Péptidos , Péptidos/química , Unión Proteica
3.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639214

RESUMEN

Lymphoid enhancer-binding factor 1 (LEF1) is a key transcription factor mediating the Wnt signaling pathway. LEF1 is a regulator that is closely associated with tumor malignancy and is usually upregulated in cancers, including colonic adenocarcinoma. The underlying molecular mechanisms of LEF1 regulation for colonic adenocarcinoma progression remain unknown. To explore it, the LEF1 expression in caco2 cells was inhibited using an shRNA approach. The results showed that downregulation of LEF1 inhibited the malignancy and motility associated microstructures, such as polymerization of F-actin, ß-tubulin, and Lamin B1 in caco2 cells. LEF1 inhibition suppressed the expression of epithelial/endothelial-mesenchymal transition (EMT) relevant genes. Overall, the current results demonstrated that LEF1 plays a pivotal role in maintaining the malignancy of colonic adenocarcinoma by remodeling motility correlated microstructures and suppressing the expression of EMT-relevant genes. Our study provided evidence of the roles LEF1 played in colonic adenocarcinoma progression, and suggest LEF1 as a potential target for colonic adenocarcinoma therapy.


Asunto(s)
Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Movimiento Celular , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Actinas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Humanos , Factor de Unión 1 al Potenciador Linfoide/genética , Seudópodos/metabolismo , Tubulina (Proteína)/metabolismo , Células Tumorales Cultivadas
4.
Biotechnol Lett ; 43(1): 153-164, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33145670

RESUMEN

OBJECTIVES: Breast cancer is a popular fatal malignant tumor for women with high of rates incidence and mortality. Development of the new approaches for breast cancer targeted diagnosis and chemotherapy is emergently needed by the current clinical practice, the important first step is finding a breast cancer specifically binding molecule or fragment as early clinical indicators. RESULTS: By a phage-displayed peptide library, a 12-mer peptide, CSB1 was screened out using MCF-7 cells as the target. The consequently results under immunofluorescence and laser scanning confocal microscope (LSCM) indicated that CSB1 bound MCF-7 cells and breast cancer tissues specifically and sensitively with high affinity. Bioinformatics analysis suggested that the peptide CSB1 targets the 5-Lipoxygenase-Activating Protein (FLAP), which has been implicated in breast cancer progression and prognosis. CONCLUSIONS: The peptide, CSB1 is of the potential as a candidate to be used for developing the new approaches of molecular imaging detection and targeting chemotherapy of breast cancer in the future.


Asunto(s)
Bioprospección/métodos , Neoplasias de la Mama , Biblioteca de Péptidos , Péptidos , Mama/química , Mama/metabolismo , Neoplasias de la Mama/química , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Células MCF-7 , Péptidos/análisis , Péptidos/química , Péptidos/metabolismo
5.
Nanoscale ; 12(32): 17029-17044, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32780053

RESUMEN

Hepatocellular carcinoma (HCC) is a severe malignant disease threatening human life. Current chemotherapy methods usually result in poor prognosis with low treatment efficacy and high side effects because of weak targeting specificity and fast acquisition of multidrug resistance (MDR). HCSP4 is a 12-aa peptide previously identified to specifically and sensitively bind to HCC cells and tissues. In this study, a novel class of HCC-targeting doxorubicin (DOX) delivery system, named HCSP4-Lipo-DOX-miR101, was synthesized and investigated for anticancer activity. HCSP4-Lipo-DOX-miR101 exhibited specific HCC targeting characteristics and satisfactory anticancer potency against HepG2 and HepG2/ADR cells, particularly HepG2/ADR cells. Moreover, the expression levels of genes closely related to membrane transport and cancer growth were significantly suppressed. This finding suggests that HCSP4-Lipo-DOX-miR101 can cause DOX-resistant HCC cell death and growth inhibition based on the targeting of MDR-related genes by miR-101. In conclusion, the findings of this study suggest that HCSP4-Lipo-DOX-miR101 may serve as a promising novel targeted delivery system for improving the therapeutic efficiency of drug-resistant hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Preparaciones Farmacéuticas , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , MicroARNs/genética
6.
Microsc Microanal ; 25(4): 950-960, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31172894

RESUMEN

Annexin A2 (ANXA2) is reported to be associated with cancer development. To investigate the roles ANXA2 plays during the development of cancer, the RNAi method was used to inhibit the ANXA2 expression in caco2 (human colorectal cancer cell line) and SMMC7721 (human hepatocarcinoma cell line) cells. The results showed that when the expression of ANXA2 was efficiently inhibited, the growth and motility of both cell lines were significantly decreased, and the development of the motility relevant microstructures, such as pseudopodia, filopodia, and the polymerization of microfilaments and microtubules were obviously inhibited. The cancer cell apoptosis was enhanced without obvious significance. The possible regulating pathway in the process was also predicted and discussed. Our results suggested that ANXA2 plays important roles in maintaining the malignancy of colorectal and hepatic cancer by enhancing the cell proliferation, motility, and development of the motility associated microstructures of cancer cells based on a possible complicated signal pathway.


Asunto(s)
Anexina A2/metabolismo , Carcinogénesis , Carcinoma Hepatocelular/fisiopatología , Neoplasias Colorrectales/fisiopatología , Citoesqueleto/metabolismo , Neoplasias Hepáticas/fisiopatología , Anexina A2/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Silenciador del Gen , Humanos , Modelos Biológicos , Interferencia de ARN
7.
Nanotechnology ; 30(7): 075604, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30523991

RESUMEN

'Targeting peptides' have demonstrated their value in diagnostic imaging and therapy and novel peptide probes specific to cervical cancer were developed. In the M13KE phage dodecapeptide (12-mer) peptide library, the phage clone S7 showed the best binding to the cancer cells as confirmed by immunofluorescence and flow cytometry assays, and was selected for continued studies. Its binding peptide, CSP3, was synthesized from the sequence of S7's 12-mer at the N-terminus of the minor coat protein pIII of this M13KE phage vector. The peptide's binding was analyzed by the same assays used for S7. It was also assessed using competitive inhibition and binding to a tissue chip. The results demonstrated that the CSP3 peptide bound to cervical carcinoma cells with high sensitivity and specificity. The positive results indicated that the peptide CSP3, conjugated with nanomaterials and chemotherapeutics, may be developed as a targeting vehicle for therapeutic drug delivery against cervical cancer, especially cervical cancer with multiple drug resistance. For this aim, we prepared a CSP3 conjugated liposome drug delivery system containing doxorubicin (DOX) and microRNA101 (miR101) expression plasmids (CSP3-Lipo-DOX-miR101), and the primary result showed that the system demonstrated significantly enhanced cytotoxicity to SiHa cells and DOX resistant SiHa cells, SiHa/ADR. Our results showed that CSP3 is a cervical cancer targeting 12aa peptide with high specificity and sensitivity, and the CSP3 conjugated drug delivery system, CSP3-Lipo-DOX-miR101 has promising potential for development as an efficient drug system for the therapy of cervical cancer.


Asunto(s)
Doxorrubicina/análogos & derivados , MicroARNs/farmacología , Péptidos/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Adulto , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Femenino , Humanos , MicroARNs/química , Persona de Mediana Edad , Biblioteca de Péptidos , Péptidos/química , Péptidos/aislamiento & purificación , Polietilenglicoles/química , Polietilenglicoles/farmacología , Neoplasias del Cuello Uterino/terapia
8.
Arch Med Res ; 48(1): 27-34, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28577867

RESUMEN

BACKGROUND AND AIMS: Myocardial infarction (MI) is accompanied by increased collagen deposition, cell necrosis and angiogenesis in cardiac tissue, which results in reduced ventricular compliance. Both microRNA-29a (miR-29a) and microRNA-101a (miR-101a) target the mRNAs encoding collagens and other proteins involved in fibrosis. METHODS: We assessed the effects of intermittent aerobic exercise on the expression of cardiac miR-29a and miR-101a and following effects on the TGFß, fos, Smad2/3, COL1A1 and COL3A1 in MI model of rats. Intermittent aerobic exercise for MI rats was begun from the second week and ended at the ninth week postsurgery. Expressions of microRNAs (miRNAs) and fibrosis-associated genes were detected from the infarction adjacent region located in the left ventricle. The heart coefficient (HC = heart weight/body weight) and hemodynamics assay were used to evaluate cardiac function level. RESULTS: Intermittent aerobic exercise inhibited myocardial interstitial collagen deposition and significantly improved cardiac function of MI rats. The results of real-time PCR and Western blot indicate that intermittent aerobic exercise enhanced the expression of miR-29a and miR-101a and inhibited TGFß pathway in the MI rats. CONCLUSIONS: Our results suggest that controlled intermittent aerobic exercise can inhibit TGFß pathway via up-regulation to the expression of miR-29a and miR-101a and finally cause a reduced fibrosis and scar formation in cardiac tissue. We believe that controlled intermittent aerobic exercise is beneficial to the healing and discovery of damaged cardiac tissues and their function after MI.


Asunto(s)
Colágeno/biosíntesis , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Condicionamiento Físico Animal , Animales , Fibrosis , Hemodinámica , Masculino , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Miocardio/patología , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...