Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 158: 213764, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227991

RESUMEN

Neutrophils play a crucial role in inflammatory immune responses, but their in vivo homing to inflammatory lesions remains unclear, hampering precise treatment options. In this study, we employed a biomineralization-inspired multimodal nanoagent to label neutrophils, enabling noninvasive monitoring of the dynamic process of inflammatory recruitment and guiding photothermal therapy in rheumatoid arthritis. Our nanoagents allowed visualization of neutrophil fate through magnetic resonance imaging, photoacoustic imaging, and fluorescence imaging in the first and second near-infrared windows. Histopathology and immunofluorescence analysis revealed pronounced inflammatory cell infiltration in rheumatoid arthritis compared to the normal limb. Furthermore, the recruitment quantity of neutrophils positively correlated with the inflammatory stage. Additionally, the inherent photothermal effect of the nanoagents efficiently ablated inflammatory cells during the optimal homing time and inflammatory phase. This neutrophil imaging-guided photothermal therapy precisely targeted inflammatory nuclei in rheumatoid arthritis and downregulated pro-inflammatory cytokines in serum. These results demonstrate that in vivo tracking of inflammatory immune response cells can significantly optimize the treatment of inflammatory diseases, including rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide , Neutrófilos , Humanos , Fototerapia , Terapia Fototérmica , Artritis Reumatoide/terapia , Biomineralización
2.
ACS Nano ; 18(4): 2800-2814, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227969

RESUMEN

The development of a radioresponsive delivery platform has led to an innovative combination radioimmunotherapy strategy for treating tumors. However, controlling the release of immunomodulators by local radiotherapy in vivo remains a significant challenge in order to minimize off-target toxicity, reduce radiation-induced immunosuppression, and maximize synergistic radioimmunotherapy efficacy. In this study, we report the development of core-cross-linked diselenide nanoparticles (dSeNPs) as carriers for radioresponsive delivery of the toll-like receptors 7/8 agonist through systemic administration to achieve combined radioimmunotherapy of tumors. The dSeNPs were fabricated from a ring-opening reaction between 2,2'-diselenidebis(ethylamine) and the ethylene oxide group of an amphiphilic block copolymer. The diselenide bonds were naturally protected in the core of the self-assembled nanostructure, making the dSeNPs extremely stable in the physiological environment. However, they exhibited dose- and time-dependent radiosensitivity, meaning that X-ray irradiation could spatiotemporally control the release of R848 from the dSeNPs. In vivo results showed that local radioresponsive R848 release from dSeNPs greatly improved the synergistic efficacy of combined radioimmunotherapy via the programmed cooperative immune system activation process. This process included macrophage polarization, dendritic cell maturation, and cytotoxic T cell activation. Our findings suggest that core-cross-linked dSeNPs are a promising platform for combined radiotherapy due to their spatiotemporal controllability of radioresponsive drug release.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Receptor Toll-Like 7/agonistas , Radioinmunoterapia , Neoplasias/tratamiento farmacológico , Adyuvantes Inmunológicos , Nanopartículas/química
3.
J Control Release ; 365: 398-411, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007194

RESUMEN

Secretory otitis media (SOM) is a clinical condition characterized by the accumulation of fluids and oxidative stress in the middle ear, leading to hearing impairment and infection complications. One potential solution for mitigating oxidative stress associated with SOM is the use of antioxidants such as astaxanthin. However, its effectiveness is limited due to its poor bioavailability and rapid oxidation. Herein, we developed a novel diselenium-crosslinked apotransferrin enriched with astaxanthin (AST@dSe-AFT) nanoparticles to augment the transport of astaxanthin across biological membranes, resulting in increased bioavailability and reduced oxidative stress in SOM. Our research demonstrated that AST@dSe-AFT efficiently accumulated in the middle ear, allowing for controlled delivery of astaxanthin in response to reactive oxygen species and reducing oxidative stress. Additionally, AST@dSe-AFT stimulated macrophages to polarize towards M2 phenotype and neutrophils to polarize towards N2 phenotype, thereby facilitating an anti-inflammatory response and tissue restoration. Importantly, AST@dSe-AFT exhibited no toxicity or adverse effects, suggesting its potential for safety and future clinical translation. Our findings suggested that AST@dSe-AFT represents a promising approach for the treatment of secretory otitis media and other oxidative stress-related disorders.


Asunto(s)
Apoproteínas , Nanopartículas , Otitis Media con Derrame , Transferrina , Humanos , Otitis Media con Derrame/tratamiento farmacológico , Antioxidantes/uso terapéutico , Estrés Oxidativo , Xantófilas
4.
ACS Nano ; 18(1): 1022-1040, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38131289

RESUMEN

In situ vaccination (ISV) formed with the aid of intratumorally injected adjuvants has shed bright light on enhancing the abscopal therapeutic effects of radiotherapy. However, the limited availability of antigens resulting from the radiotherapy-induced immunogenic cell death largely hampers the clinical outcome of ISV. To maximally utilize the radiotherapy-induced antigen, we herein developed a strategy by capturing the radiotherapy-induced antigen in situ with a nanoadjuvant comprised of CpG-loaded Fe3O4 nanoparticles. The highly efficient click reaction between the maleimide residue on the nanoadjuvant and sulfhydryl group on the antigen maximized the bioavailability of autoantigens and CpG adjuvant in vivo. Importantly, combined immune checkpoint blockade can reverse T cell exhaustion after treatment with radiotherapy-induced ISV, thereby largely suppressing the treated and distant tumor. Mechanistically, metabolomics reveals the intratumorally injected nanoadjuvants disrupt redox homeostasis in the tumor microenvironment, further inducing tumor ferroptosis after radiotherapy. Overall, the current study highlights the immense potential of the innovative antigen-capturing nanoadjuvants for synergistically enhancing the antitumor effect.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Inmunoterapia/métodos , Neoplasias/radioterapia , Inmunidad , Adyuvantes Inmunológicos/farmacología , Vacunación , Microambiente Tumoral , Línea Celular Tumoral
5.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062765

RESUMEN

Epigenetics regulates gene expression and play significant roles across diverse disease states. Epigenetics mechanisms, including DNA methylation, histone modifications, microRNAs/lncRNA, and N6-methyladenosine (m6A) RNA methylation, elicit heritable but reversible modifications in gene expression without modifying the DNA sequence. Recent research suggests that certain natural phytochemicals with chemopreventive properties have the potential to function as epigenetic regulators. Quercetin, a derivative of natural flavonoid glycosides and a constituent of the human diet, is linked to a variety of health benefits including anti-inflammatory, anticancer activity, antiapoptotic, antihypertensive, and neuroprotective effects. Recent findings suggest that quercetin possesses the ability to modulate canonical biochemical signaling pathways and exert an impact on epigenetic networks. This review aims to synthesize the most recent research findings that elucidate the potential biological effects of quercetin and its influence on in vitro and in vivo models via epigenetic mechanisms. In light of our findings, it is evident that quercetin possesses the potential to function as an exemplary instance of naturally derived phytochemicals, which can be effectively employed as a pivotal constituent in functional foods and dietary supplements aimed at the amelioration of various ailments. More specifically, its mechanism of action involves the alteration of diverse epigenetic targets.

6.
ACS Nano ; 17(24): 25147-25156, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38063344

RESUMEN

X-ray-induced radiodynamic therapy (RDT) that can significantly reduce radiation dose with an improved anticancer effect has emerged as an attractive and promising therapeutic modality for tumors. However, it is highly significant to develop safe and efficient radiosensitizing agents for tumor radiation therapy. Herein, we present a smart nanotheranostic system FA-Au-CH that consists of gold nanoradiosensitizers, photosensitizer chlorin e6 (Ce6), and folic acid (FA) as a folate-receptor-targeting ligand for improved tumor specificity. FA-Au-CH nanoparticles have been demonstrated to be able to simultaneously serve as radiosensitizers and RDT agents for enhanced computed tomography (CT) imaging-guided radiotherapy (RT) of colon carcinoma, owing to the strong X-ray attenuation capability of high-Z elements Au and Hf, as well as the characteristics of Hf that can transfer radiation energy to Ce6 to generate ROS from Ce6 under X-ray irradiation. The integration of RT and RDT in this study demonstrates great efficacy and offers a promising therapeutic modality for the treatment of malignant tumors.


Asunto(s)
Carcinoma , Neoplasias del Colon , Fotoquimioterapia , Porfirinas , Fármacos Sensibilizantes a Radiaciones , Humanos , Porfirinas/uso terapéutico , Hafnio , Oro , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Línea Celular Tumoral
7.
Analyst ; 148(24): 6334-6340, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37947486

RESUMEN

Indocyanine green (ICG), as the only Federal Drug Administration (FDA) approved fluorescence imaging agent, has been widely applied in clinics for near-infrared (NIR) fluorescence imaging-guided surgery and photothermal therapy of cancers. However, its lack of target specificity and poor photo and photothermal stabilities seriously restrict its wide application in clinical practice. Herein, we developed ICG-derived NIR fluorescent probes consisting of a cypate fluorophore and one or two cyclic-(arginine-glycine-aspartic acid) (cRGD) peptides that can specifically target αvß3 integrin for accurate diagnosis and therapy of oral tumors. Probe Cy-2RGD has been demonstrated to possess bright NIR emission, great tumor targeting capability and a photothermal effect. Moreover, it could be successfully used for effective imaging-guided surgical resection as well as photothermal therapy of oral tumors. This work could provide a valuable tool for sensitive detection and accurate treatment of malignant tumors.


Asunto(s)
Verde de Indocianina , Neoplasias de la Boca , Humanos , Verde de Indocianina/uso terapéutico , Terapia Fototérmica , Colorantes Fluorescentes , Neoplasias de la Boca/diagnóstico por imagen , Neoplasias de la Boca/terapia , Imagen Óptica/métodos
8.
Trends Immunol ; 44(12): 1031-1045, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37932176

RESUMEN

Tumor immunotherapy is refashioning traditional treatments in the clinic for certain tumors, especially by relying on the activation of T cells. However, the safety and effectiveness of many antitumor immunotherapeutic agents are suboptimal due to difficulties encountered in assessing T cell responses and adjusting treatment regimens accordingly. Here, we review advances in the clinical visualization of T cell activity in vivo, and focus particularly on molecular imaging probes and biomarkers of T cell activation. Current challenges and prospects are also discussed that aim to achieve a better strategy for real-time monitoring of T cell activity, predicting prognoses and responses to tumor immunotherapy, and assessing disease management.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Linfocitos T , Neoplasias/terapia , Inmunoterapia/métodos , Imagen Molecular
9.
Nanoscale Adv ; 5(11): 3053-3062, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37260491

RESUMEN

The combination of chemotherapy with photothermal therapy (PTT) has attracted extensive attention due to its excellent synergetic effect attributing to the fact that hyperthermia can effectively promote the tumor uptake of chemotherapeutic drugs. Herein, we propose a light-initiated gold nanoparticle (AuNP) aggregation boosting the uptake of chemotherapeutic drugs for enhanced chemo-photothermal tumor therapy. Novel light-responsive AuNPs (tm-AuNPs) were rationally designed and fabricated by conjugating both 2,5-diphenyltetrazole (Tz) and methacrylic acid (Ma) onto the surface of AuNPs with small size (∼20 nm). Upon the irradiation of 405 nm laser, AuNPs could be initiated to form aggregates specifically within tumors through the covalent cycloaddition reaction between Tz and Ma. Taking advantage of the controllable photothermal effect of Au aggregates under NIR excitation, improved enrichment of doxorubicin (DOX) in tumor tissues was realized, combined with PTT, resulting in outstanding synergetic anti-tumor efficacy in living mice. We thus believe that this light-initiated AuNP aggregation approach would offer a valuable and powerful tool for precisely synergistic chemo-photothermal tumor therapy.

10.
ACS Nano ; 17(8): 7109-7134, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37036400

RESUMEN

Lesion areas are distinguished from normal tissues surrounding them by distinct physiological characteristics. These features serve as biological hallmarks with which targeted biomedical imaging of the lesion sites can be achieved. Although tremendous efforts have been devoted to providing smart imaging probes with the capability of visualizing the physiological hallmarks at the molecular level, the majority of them are merely able to derive anatomical information from the tissues of interest, and thus are not suitable for taking part in in vivo quantification of the biomarkers. Recent advances in chemical construction of advanced ratiometric nanoprobes (RNPs) have enabled a horizon for quantitatively monitoring the biological abnormalities in vivo. In contrast to the conventional probes whose dependency of output on single-signal profiles restricts them from taking part in quantitative practices, RNPs are designed to provide information in two channels, affording a self-calibration opportunity to exclude the analyte-independent factors from the outputs and address the issue. Most of the conventional RNPs have encountered several challenges regarding the reliability and sufficiency of the obtained data for high-performance imaging. In this Review, we have summarized the recent progresses in developing highly advanced RNPs with the capabilities of deriving maximized information from the lesion areas of interest as well as adapting themselves to the complex biological systems in order to minimize microenvironmental-induced falsified signals. To provide a better outlook on the current advanced RNPs, nanoprobes based on optical, photoacoustic, and magnetic resonance imaging modalities for visualizing a wide range of analytes such as pH, reactive species, and different derivations of amino acids have been included. Furthermore, the physicochemical properties of the RNPs, the major constituents of the nanosystems and the analyte recognition mechanisms have been introduced. Moreover, the alterations in the values of the ratiometric signal in response to the analyte of interest as well as the time at which the highest value is achieved, have been included for most of RNPs discussed in this Review. Finally, the challenges as well as future perspectives in the field are discussed.


Asunto(s)
Aminoácidos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados
11.
Chem Sci ; 14(9): 2369-2378, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36873836

RESUMEN

Spatiotemporally manipulating the in situ immobilization of theranostic agents within cancer cells to improve their bioavailability is highly significant yet challenging in tumor diagnosis and treatment. Herein, as a proof-of concept, we for the first time report a tumor-targetable near-infrared (NIR) probe DACF with photoaffinity crosslinking characteristics for enhanced tumor imaging and therapeutic applications. This probe possesses great tumor-targeting capability, intensive NIR/photoacoustic (PA) signals, and a predominant photothermal effect, allowing for sensitive imaging and effective photothermal therapy (PTT) of tumors. Most notably, upon 405 nm laser illumination, DACF could be covalently immobilized within tumor cells through a photocrosslinking reaction between photolabile diazirine groups and surrounding biomolecules resulting in enhanced tumor accumulation and prolonged retention simultaneously, which significantly facilitates the imaging and PTT efficacy of tumor in vivo. We therefore believe that our current approach would provide a new insight for achieving precise cancer theranostics.

12.
Adv Healthc Mater ; 12(12): e2300028, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36876892

RESUMEN

Immune checkpoint blockers therapy can improve the radiotherapy-induced immunosuppression by enhancing interferon secretion, but still suffer from low clinical response rate and potential adverse effects. Mn2+ -mediated activation of interferon gene stimulator (STING) pathway provides an alternative for combination radioimmunotherapy of tumor. However, it is still a challenge for specific delivery of Mn2+ to innate immune cells and targeting activation of STING pathway. Herein, a novel antigen-inspired MnO2 nanovaccine is fabricated as Mn2+ source and functionalized with mannose, enabling it to target innate immune cells to activate the STING pathway. Meanwhile, the release of Mn2+ in the intracellular lysosomes can also be for magnetic resonance imaging to monitor the dynamic distribution of nanovaccines in vivo. The targeting activation of STING pathway can enhance radiotherapy-induced immune responses for inhibiting local and distant tumors, and resisting tumor metastasis. The study proposes an optimized radiotherapy strategy through targeting STING activation of antigen-inspired nanovaccines.


Asunto(s)
Compuestos de Manganeso , Neoplasias , Humanos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Óxidos , Neoplasias/terapia , Interferones
13.
Adv Sci (Weinh) ; 10(3): e2205462, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453571

RESUMEN

Acetylation of extracellular proteins has been observed in many independent studies where particular attention has been given to the dynamic change of the microenvironmental protein post-translational modifications. While extracellular proteins can be acetylated within the cells prior to their micro-environmental distribution, their deacetylation in a tumor microenvironment remains elusive. Here it is described that multiple acetyl-vWA domain-carrying proteins including integrin ß3 (ITGB3) and collagen 6A (COL6A) are deacetylated by Sirtuin family member SIRT2 in extracellular space. SIRT2 is secreted by macrophages following toll-like receptor (TLR) family member TLR4 or TLR2 activation. TLR-activated SIRT2 undergoes autophagosome translocation. TNF receptor associated factor 6 (TRAF6)-mediated autophagy flux in response to TLR2/4 activation can then pump SIRT2 into the microenvironment to function as extracellular SIRT2 (eSIRT2). In the extracellular space, eSIRT2 deacetylates ITGB3 on aK416 involved in cell attachment and migration, leading to a promotion of cancer cell metastasis. In lung cancer patients, significantly increased serum eSIRT2 level correlates with dramatically decreased ITGB3-K416 acetylation in cancer cells. Thus, the extracellular space is a subcellular organelle-like arena where eSIRT2 promotes cancer cell metastasis via catalyzing extracellular protein deacetylation.


Asunto(s)
Neoplasias Pulmonares , Sirtuina 2 , Humanos , Sirtuina 2/genética , Sirtuina 2/metabolismo , Receptor Toll-Like 2/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Microambiente Tumoral
14.
Cancer Res ; 82(23): 4400-4413, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36197797

RESUMEN

Lysyl oxidase-like 2 (LOXL2) is a member of the scavenger receptor cysteine-rich (SRCR) repeat carrying LOX family. Although LOXL2 is suspected to be involved in histone association and chromatin modification, the role of LOXL2 in epigenetic regulation during tumorigenesis and cancer progression remains unclear. Here, we report that nuclear LOXL2 associates with histone H3 and catalyzes H3K36ac deacetylation and deacetylimination. Both the N-terminal SRCR repeats and the C-terminal catalytic domain of LOXL2 carry redundant deacetylase catalytic activity. Overexpression of LOXL2 markedly reduced H3K36 acetylation and blocked H3K36ac-dependent transcription of genes, including c-MYC, CCND1, HIF1A, and CD44. Consequently, LOXL2 overexpression reduced cancer cell proliferation in vitro and inhibited xenograft tumor growth in vivo. In contrast, LOXL2 deficiency resulted in increased H3K36 acetylation and aberrant expression of H3K36ac-dependent genes involved in multiple oncogenic signaling pathways. Female LOXL2-deficient mice spontaneously developed uterine hypertrophy and uterine carcinoma. Moreover, silencing LOXL2 in cancer cells enhanced tumor progression and reduced the efficacy of cisplatin and anti-programmed cell death 1 (PD-1) combination therapy. Clinically, low nuclear LOXL2 expression and high H3K36ac levels corresponded to poor prognosis in uterine endometrial carcinoma patients. These results suggest that nuclear LOXL2 restricts cancer development in the female reproductive system via the regulation of H3K36ac deacetylation. SIGNIFICANCE: LOXL2 loss reprograms the epigenetic landscape to promote uterine cancer initiation and progression and repress the efficacy of anti-PD-1 immunotherapy, indicating that LOXL2 is a tumor suppressor.


Asunto(s)
Aminoácido Oxidorreductasas , Epigénesis Genética , Humanos , Ratones , Femenino , Animales , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Acetilación , Histonas/metabolismo , Hipertrofia/genética , Expresión Génica
15.
Immunology ; 167(4): 471-481, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36065492

RESUMEN

The immune checkpoint programmed death receptor 1 (PD-1) and programmed death ligand 1 (PD-L1) are biologically important immunosuppressive molecules, and the PD-L1/PD-1-mediated signalling pathway is currently considered one of the main mechanisms of tumour escape immune surveillance. PD-L1 is highly expressed on the cytomembrane of tumour cell and binds to PD-1 receptor of activated T cells. This interaction activates PD-L1/PD-1 downstream signal transduction, inhibiting T cells anti-tumour activity. Therefore, inhibitors of PD-L1/PD-1 activation, showing significant efficacy in some types of tumours, have been widely approved in clinical tumour therapy. Recent research on PD-L1/PD-1 signalling pathway regulation has shown post-translational modifications (PTMs) form of PD-L1 or PD-1, including glycosylation, ubiquitination, phosphorylation, and acetylation, which may play an important role in PD-L1/PD-1 signalling pathway regulation and anti-tumour function of T cells. In this review, we focused on PTMs of PD-L1/PD-1 research and potential applications in tumour immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Receptor de Muerte Celular Programada 1 , Inmunoterapia , Procesamiento Proteico-Postraduccional
16.
Anal Chem ; 93(26): 9277-9285, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34160212

RESUMEN

Specific and effective accumulation of nanoparticles within tumors is highly crucial for precise cancer diagnosis and treatment. Therefore, spatiotemporally manipulating the aggregation of small gold nanoparticles (AuNPs) in a tumor microenvironment is of great significance for enhancing the diagnostic and therapeutic efficacy of tumors. Herein, we reported a novel furin enzyme/acidic pH synergistically triggered small AuNP aggregation strategy for activating the photoacoustic (PA) imaging and photothermal (PTT) functions of AuNPs in vivo. Smart gold nanoparticles decorated with furin-cleavable RVRR (Arg-Val-Arg-Arg) peptides (Au-RRVR) were rationally designed and fabricated. Both in vitro and in vivo experiments demonstrated that such Au-RRVR nanoparticles could be simultaneously induced by furin and acidic pH to form large aggregates within tumorous tissue resulting in improved tumor accumulation and retention, which can further activate the PA and PTT effect of AuNPs for sensitive imaging and efficient therapy of tumors. Thus, we believe that this dual-stimuli-responsive aggregation system may offer a universal platform for effective cancer diagnosis and treatment.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Línea Celular Tumoral , Furina , Oro , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Fototerapia , Terapia Fototérmica , Microambiente Tumoral
17.
Cell Death Discov ; 7(1): 11, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446662

RESUMEN

Besides their original regulating roles in the brain, spinal cord, retina, and peripheral nervous system for mediating fast excitatory synaptic transmission, glutamate receptors consisting of metabotropic glutamate receptors (GluRs) and ionotropic glutamate receptors (iGluRs) have emerged to have a critical role in the biology of cancer initiation, progression, and metastasis. However, the precise mechanism underpinning the signal transduction mediated by ligand-bound GluRs is not clearly elucidated. Here, we show that iGluRs, GluR1 and GluR2, are acetylated by acetyltransferase CREB-binding protein upon glutamate stimulation of cells, and are targeted by lysyl oxidase-like 2 for deacetylation. Acetylated GluR1/2 recruit ß-arrestin1/2 and signal transducer and activator of transcription 3 (STAT3) to form a protein complex. Both ß-arrestin1/2 and STAT3 are subsequently acetylated and activated. Simultaneously, activated STAT3 acetylated at lysine 685 translocates to mitochondria to upregulate energy metabolism-related gene transcription. Our results reveal that acetylation-dependent formation of GluR1/2-ß-arrestin1/2-STAT3 signalosome is critical for glutamate-induced cell proliferation.

18.
J Am Chem Soc ; 142(51): 21502-21512, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33306393

RESUMEN

Improving the enrichment of drugs or theranostic agents within tumors is very vital to achieve effective cancer diagnosis and therapy while greatly reducing the dosage and damage to normal tissues. Herein, as a proof of concept, we for the first time report a red light-initiated probe-RNA cross-linking (RLIPRC) strategy that can not only robustly promote the accumulation and retention of the probe in the tumor for prolonged imaging but also significantly inhibits the tumor growth. A near-infrared (NIR) fluorescent probe f-CR consisting of a NIR dye (Cyanine 7) as a signal reporter, a cyclic-(arginine-glycine-aspartic acid) (cRGD) peptide for tumor targeting, and a singlet oxygen (1O2)-sensitive furan moiety for RNA cross-linking was rationally designed and synthesized. This probe possessed both passive and active tumor targeting abilities and emitted intense NIR/photoacoustic (PA) signals, allowing for specific and sensitive dual-modality imaging of tumors in vivo. Notably, probe f-CR could be specifically and covalently cross-linked to cytoplasmic RNAs via the cycloaddition reaction between furan and adenine, cytosine, or guanine under the oxidation of 1O2 generated in situ by irradiation of methylene blue (MB) with 660 nm laser light, which effectively blocks the exocytosis of the probes resulting in enhanced tumor accumulation and retention. More excitingly, for the first time, we revealed that the covalent cross-linking of probe f-CR to cytoplasmic RNAs could induce severe apoptosis of cancer cells leading to remarkable tumor suppression. This study thus represents the first red light-initiated RNA cross-linking system with high potential to improve the diagnostic and therapeutic outcomes of tumors in vivo.


Asunto(s)
Citoplasma/metabolismo , Rayos Infrarrojos , Imagen Molecular/métodos , Fotoquimioterapia/métodos , ARN/metabolismo , Carbocianinas/química , Línea Celular Tumoral , Citoplasma/efectos de la radiación , Humanos , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo
19.
Nanomedicine (Lond) ; 14(22): 2941-2955, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31755353

RESUMEN

Aim: We aimed to characterize the tumor-targeting and radiosensitization properties of the photo-responsive gold nanoparticles (AuNPs) decorated photolabile diazirine group and folic acid for improved radiotherapy and computed tomography imaging of tumors. Methods: Folic acid and photolabile diazirine group were covalently conjugated on the surface of AuNPs to afford the desired photo-responsive dAuNP-FA (AuNPs capped with poly(ethylene) glycol ligands bearing photolabile diazirine group and folic acid). The probes were intravenously injected into tumor-bearing mice followed by photocrosslinking upon 405 nm laser irradiation for radiotherapy and computed tomography imaging of tumors in vivo. Results: Light-triggered crosslinking of AuNPs in vivo remarkably enhanced the accumulation and retention of AuNPs within tumors. Conclusion: We have successfully developed a novel photo-responsive Au particle-based tumor theranostic probe showing remarkably improved tumor targeting ability and radiosensitization effect.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Fármacos Sensibilizantes a Radiaciones/química , Tomografía Computarizada por Rayos X/métodos , Animales , División Celular/genética , División Celular/fisiología , Línea Celular Tumoral , Femenino , Ácido Fólico/química , Fase G2/genética , Fase G2/fisiología , Humanos , Ratones , Polietilenglicoles/química
20.
Chembiochem ; 20(5): 667-671, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30447100

RESUMEN

Manipulating the cross-coupling of gold nanoparticles (AuNPs) to maximize the photothermal effect is a promising strategy for cancer therapy. Here, by taking advantage of the well-known tetrazole/alkene photoclick chemistry, we have demonstrated for the first time that small AuNPs (23 nm) decorated with both 2,5-diphenyltetrazole and methacrylic acid on their surfaces can form covalently crosslinked aggregates upon laser irradiation (λ=405 nm). In vitro studies indicated that the light-triggered assembling shifted the surface plasmon resonance of AuNPs significantly to near-infrared (NIR) regions, which as a consequence effectively enhanced the efficacy of photothermal therapy for 4T1 breast cancer cells. We thus believe that this new light-triggered cross-coupling approach might offer a valuable tool for cancer treatment.


Asunto(s)
Oro/uso terapéutico , Hipertermia Inducida/métodos , Nanopartículas del Metal/uso terapéutico , Neoplasias/tratamiento farmacológico , Fototerapia/métodos , Células 3T3 , Animales , Línea Celular Tumoral , Metacrilatos/química , Ratones , Resonancia por Plasmón de Superficie , Tetrazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...