Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2312087, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441286

RESUMEN

The LiCoO2 (LCO) cathode is foreseen for extensive commercial applications owing to its high specific capacity and stability. Therefore, there is considerable interest in further enhancing its specific capacity by increasing the charging voltage. However, single-crystal LCO suffers from a significant capacity degradation when charged to 4.5 V due to the irreversible phase transition and unstable structure. Herein, an ultra-small amount (0.5% wt. in the electrode) of multi-functional PIM-1 (a polymer with intrinsic microporosity) additive is utilized to prepare a kind of binder-free electrode. PIM-1 modulates the solvation structure of LiPF6 due to its unique structure, which helps to form a stable, robust, and inorganic-rich cathod-eelectrolyte interphase (CEI) film on the surface of LCO at a high voltage of 4.5 V. This reduces the irreversible phase transition of LCO, thereby enhancing the cyclic stability and improving the rate performance, providing new perspectives for the electrodes fabrication and improving LCO-based high-energy-density cathodes.

2.
ACS Appl Mater Interfaces ; 16(6): 7232-7242, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38302451

RESUMEN

Niobium pentoxides (Nb2O5) present great potential as next-generation anode candidates due to exceptional lithium-ion intercalation kinetics, considerably high capacity, and reasonable redox potential. Although four phases of Nb2O5 including hexagonal, orthorhombic, tetragonal, and monoclinic polymorphs show diverse characteristics in electrochemical performance, stable lifetime, high specific capacity, and fast intercalation properties cannot be delivered simultaneously with a single phase. Herein, this issue is addressed by generating a homogeneous mixture of orthorhombic and monoclinic crystals at the nanoscale. Reversible lithium-ion intercalation/deintercalation of the monoclinic phase is achieved, and exceptional lithium storage sites are created at the interface of the two phases. As a result, electrochemical features of stable lifetime from the orthorhombic phase and high specific performance from the monoclinic phase are harmoniously combined. This dual-phase Nb2O5/C nanohybrids deliver as high as 380 mA h g-1 (0.01-3.0 V) and 184 mA h g-1 (1.0-3.0 V) after 200 cycles. The essential principle of property enhancement is further confirmed through in situ XRD measurements and DFT calculations. The dual-phase concept can be further applied on electrodes with multiphases to achieve high electrochemical performance.

3.
Small ; 20(2): e2305019, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37661575

RESUMEN

Na-based layered transition metal oxides with an O3-type structure are considered promising cathodes for sodium-ion batteries. However, rapid capacity fading, and poor rate performance caused by serious structural changes and interfacial degradation hamper their use. In this study, a NaPO3 surface modified O3-type layered NaNi1/3 Fe1/3 Mn1/3 O2 cathode is synthesized, with improved high-voltage stability through protecting layer against acid attack, which is achieved by a solid-gas reaction between the cathode particles and gaseous P2 O5 . The NaPO3 nanolayer on the surface effectively stabilizes the crystal structure by inhibiting surface parasitic reactions and increasing the observed average voltage. Superior cyclic stability is exhibited by the surface-modified cathode (80.1% vs 63.6%) after 150 cycles at 1 C in the wide voltage range of 2.0 V-4.2 V (vs Na+ /Na). Moreover, benefiting from the inherent ionic conduction of NaPO3 , the surface-modified cathode presents excellent rate capability (103 mAh g-1  vs 60 mAh g-1 ) at 10 C. The outcome of this study demonstrates a practically relevant approach to develop high rate and durable sodium-ion battery technology.

4.
ACS Appl Mater Interfaces ; 16(1): 731-741, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38155536

RESUMEN

Ni-rich cathode materials exhibit superior energy densities and have attracted interest among both research and industrial fields; whereas, their practical application is hindered by the intrinsic drawbacks brought by the high nickel content such as structural instability and rapid capacity fading. Herein, in situ formation of a LiBO2 coating layer and spinel phase layer is achieved on the surface of a Ni-rich cathode material via a boric acid etching method at the precursor state. The spinel phase is considered to have a 3D lithium diffusion tunnel and hence faster diffusion kinetics. Moreover, the LiBO2 layer possesses excellent (electro)chemical inertness and can suppress electrolyte decomposition, resulting in a more inorganic and stable cathode-electrolyte interface. The surface reconstructed sample exhibits better cyclic stability (93.3% capacity retention vs 85.3% for the pristine sample at 1 C for 100 cycles) and rate performance. The superiority of this surface reconstruction is demonstrated by a series of electrochemical techniques and characterization methods including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), post-mortem X-ray photoelectron spectroscopy (XPS) analysis, and density functional theory (DFT) calculations.

5.
ACS Appl Mater Interfaces ; 15(38): 44921-44931, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37708444

RESUMEN

The irreversible capacity loss of lithium-ion batteries during initial cycling directly leads to a decrease in energy density, and promising lithium cathode replenishment can significantly alleviate this problem. In response to the problems of complex preparation, instability in air, and unfavorable residue of the conventional cathode lithium replenishment materials, a Li2CO3/carbon nanocomposite is prepared and utilized as the lithium replenishment material. With high-speed ball-milling, a nanocomposite with a tight embedment structured Li2CO3/Ketjen Black (KB) composite composed of nanosized Li2CO3 and KB is synthesized. The decomposition potential of Li2CO3 is effectively decreased to 3.8 V, and the amount of the active lithium ion being released is significantly increased, corresponding to a specific capacity of 645.2 mAh·g-1 during the initial charging cycle. It has been introduced into the full-cells composed of the NCM523 cathode and graphite anode, resulting in a capacity increase of 44 mAh·g-1 in the initial cycle and a 26.4% improvement in capacity retention over 100 cycles. The working mechanism of the Li2CO3/KB nanocomposite as the lithium replenishment agent has been discussed. The outcome of the work provides a practically feasible route to realize lithium-ion battery technology with improved energy density and cycling life.

6.
ACS Appl Mater Interfaces ; 15(12): 15561-15573, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36918149

RESUMEN

A layered Li[NixCoyMn1-x-y]O2 (NCM)-based cathode is preferred for its high theoretical specific capacity. However, the two main issues that limit its practical application are severe safety issues and excessive capacity decay. A new electrode processing approach is proposed to synergistically enhance the electrochemical and safety performance. The polyimide's (PI) precursor is spin-coated on the LiNi0.5Co0.2Mn0.3O2 (NCM523) electrode sheet, and the homogeneous sulfonated PI layer is in situ produced by thermal imidization reaction. The PI-spin coated (PSC) layer provides improvements in capacity retention (86.47% vs 53.77% after 150 cycles at 1 C) and rate performance (99.21% enhancement at 5 C) as demonstrated by the NCM523-PSC||Li half-cell. The NCM523-PSC||graphite pouch full cell proves enhanced capacity retention (76.62% vs 58.58% after 500 cycles at 0.5 C) as well. The thermal safety of the NCM523-PSC cathode-based pouch cell is also significantly improved, with the critical temperature of thermal safety T1 (the beginning temperature of obvious self-heating temperature) and thermal runaway temperature T2 increased by 60.18 and 44.59 °C, respectively. Mechanistic studies show that the PSC layer has multiple effects as a passivation layer such as isolation of electrode-electrolyte contact, oxygen release suppression, solvation structure tuning, and the decomposition of carbonate solvents as well as LiPF6 inhibition. This work provides a new path for a cost-effective and scalable design of electrode decoration with synergistic safety-electrochemical kinetics enhancement.

7.
ACS Appl Mater Interfaces ; 15(2): 2901-2910, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36602816

RESUMEN

The conventional lithium-ion battery technology relies on the liquid carbonate-based electrolyte solution, which causes excessive side reactions, serious risk of electrolyte leakage, high flammability, and significant safety hazards. In this work, phosphonate-functionalized imidazolium ionic liquid (PFIL) is synthesized and used as a gel polymer electrolyte (GPE) to replace the organic carbonate-based electrolyte solution. The as-prepared ionic liquid-based gel polymer electrolyte (IL-GPE) shows low crystallinity, flame retardance, and excellent electrochemical performance. Thanks to the fast double channel transport of lithium ions in the IL-GPE electrolyte, a high ionic conductivity of 0.48 mS cm-1 and a lithium-ion transference number of 0.37 are exhibited. Symmetrical lithium cells with IL-GPE retain stable cycling even after 3000 h under 0.1 mA cm-2. IL-GPE exhibits good compatibility toward lithium metal, yielding excellent long-term electrochemical kinetic stability. IL-GPE induces the formation of a uniform and robust SEI layer, inhibiting the growth of lithium dendrites and improving the rate performance and cycle stability. Furthermore, Li/LiFePO4 cells exhibit a specific capacity of 63 mA h g-1 after 150 cycles at 5.0 C, with a capacity retention of 90.2%. It is foreseen that this GPE is a promising candidate to enhance the safety of high-performance lithium metal batteries.

8.
Spine (Phila Pa 1976) ; 48(1): E14-E19, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508573

RESUMEN

STUDY DESIGN: A prospective study. OBJECTIVE: To develop a simplified Chinese version of Lumbar Spine Instability Questionnaire (SC-LSIQ) and test its measurement properties. SUMMARY OF BACKGROUND DATA: The LSIQ has been translated into several languages. Different versions of LSIQ have proved good reliability and validity in evaluating patients with low back pain. However, there is no simplified Chinese version of LSIQ (SC-LSIQ). MATERIALS AND METHODS: The SC-LSIQ has been translated into a simplified Chinese version according to a standard procedure. A total of 155 patients with low back pain completed the SC-LSIQ along with Oswestry Disability Index, Roland-Morris disability questionnaire, Tampa Scale for Kinesiophobia, and visual analogue scale (VAS). The internal consistency, test-retest reliability, and validity of SC-LSIQ were then calculated to evaluate the measurement properties of SC-LSIQ. RESULTS: The results of SC-LSIQ demonstrated that there was no ceiling or floor effect detected. The Cronbach α coefficient of 0.911 determined a well internal consistency. The intraclass correlation coefficient (0.98) presented an excellent reliability of SC-LSIQ. The Pearson correlation coefficient (r) showed that the SC-LSIQ was excellent correlated to Oswestry Disability Index (r=0.809), Roland-Morris disability questionnaire (r=0.870), and Tampa Scale for Kinesiophobia (r=0.945,). Furthermore, it moderately correlated to visual analogue scale (r=0.586). CONCLUSION: The SC-LSIQ features good internal consistency, reliability, and validity for evaluating Chinese patients with LBP. Results suggest that the SC-LSIQ can be appropriately applied to patients with LBP in routine clinical practice.


Asunto(s)
Dolor de la Región Lumbar , Humanos , Dolor de la Región Lumbar/diagnóstico , Reproducibilidad de los Resultados , Comparación Transcultural , Evaluación de la Discapacidad , Estudios Prospectivos , Pueblos del Este de Asia , Encuestas y Cuestionarios , China , Psicometría/métodos
9.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364311

RESUMEN

Porous silicon-based anode materials have gained much interest because the porous structure can effectively accommodate volume changes and release mechanical stress, leading to improved cycling performance. Magnesiothermic reduction has emerged as an effective way to convert silica into porous silicon with a good electrochemical performance. However, corrosive HF etching is normally a mandatory step to improve the electrochemical performance of the as-synthesized silicon, which significantly increases the safety risk. This has become one of the major issues that impedes practical application of the magnesiothermic reduction synthesis of the porous silicon anode. Here, a facile HF-free method is reported to synthesize macro-/mesoporous silicon with good cyclic and rate performance by simply increasing the reduction temperature from 700 °C to 800 °C and 900 °C. The mechanism for the structure change resulting from the increased temperature is elaborated. A finite element simulation indicated that the 3D continuous structure formed by the magnesiothermic reduction at 800 °C and 900 °C could undertake the mechanical stress effectively and was responsible for an improved cyclic stability compared to the silicon synthesized at 700 °C.

10.
ACS Appl Mater Interfaces ; 14(40): 45272-45288, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36166735

RESUMEN

The Ni-rich cathode holds great promise for high energy density lithium-ion batteries because of its high capacity and operating voltage. However, crucial problems such as cation disorder, structural degradation, side reactions, and microcracks become serious with increasing nickel content. Herein, a novel and facile sol/antisolvent coating modification of Ni-rich layered oxide LiNi0.85Co0.1Mn0.05O2 (NCM) is developed where we use ethanol to disperse the nanosized LiBO2 to form the sol and adopt tetrahydrofuran (THF) as antisolvent to prepare the cluster of nanoparticles to be coated on the surface of NCM. The coating thickness can be tuned through the THF addition amount. The LiBO2 nanorod deposition is formed as well over the crack of the NCM cathode, likely acting as a patch to repair the original defect of the intrinsic crack. The uniform LiBO2 nanospherical particle coating together with LiBO2 nanorod wrapping provides a double protection against electrolytes. Compared with the raw material, LiBO2-coated LiNi0.85Co0.1Mn0.05O2 (LiBO2-coated NCM) exhibits a high initial Coulombic efficiency of 90.3% at 0.2 C between 2.8 and 4.3 V vs Li+/Li, a superior rate capability, enhanced fast charge property at 3 C, and restricted microcrack formation. This simple in-site modification and repairing technology guarantees a good mechanical integrity of the polycrystalline Ni-rich cathode.

11.
ChemSusChem ; 15(8): e202200063, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35253385

RESUMEN

As a promising alternative as lithium-ion anode, niobium dioxide appeals to researchers due to high theoretical capacity and good electron conductivity. However, rarely work about NbO2 based high performance anode is reported. Here, NbO2 nanoparticles emcoated in continuous carbon matrix is constructed through CO2 /H2 coupling treatment. CO2 activation introduces unique carbon emcoating structure, which builds interconnected electron conductive network with low carbon content. Furthermore, crystallographic phase of NbO2 is enhanced during H2 treatment, which increases the lithium storage ability. Electrochemical performance of NbO2 anodes is significantly improved based on the carbon emcoating structure. A high reversible capacity of 391 mAh g-1 is retained after 350 cycles at 0.2 C. Additionally, at a current density of 1 A g-1 , the reversible capacity reaches 139 mAh g-1 . Compared with conventional NbO2 /C nanohybrids, the lithium diffusion coefficient of carbon-emcoated sample shows improvement of three orders of magnitude. Moreover, the in situ XRD investigation shows a reversible lithium insertion behaviour with a limited volume change.

12.
ACS Appl Mater Interfaces ; 14(14): 16245-16257, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35352897

RESUMEN

Increasing working voltage is a promising way to increase the energy density of lithium-ion batteries. Cycling and rate performance deteriorated due to excessive electrolyte decomposition and uncontrolled formation of a cathode-electrolyte interface (CEI) layer at a high voltage. A new concept is proposed to construct a high-voltage-stable electrode-electrolyte interface. An elastomeric poly(dimethyl siloxane) (PDMS) binder is incorporated into the electrode to modify the LiNi0.5Co0.2Mn0.3O2 (NCM 523) particle surface via an in situ cross-linking reaction between hydroxy-terminated PDMS and methyl trimethoxy silane promoted by moisture at ambient conditions (MPDMS). Improved electrochemical performance is achieved with the MPDMS binder in terms of reversible capacity (201 vs 185 mAh·g-1 at 0.2C), capacity retention (80 vs 68%, after 300 cycles at 1C), and rate performance (55.6% increase at 5C), as demonstrated by the NCM 523||Li half-cell. The NCM 523||graphite full-cell also shows improved performance at 4.6 V (147 vs 128 mAh·g-1, 82 vs 76%, after 200 cycles at 1C). The mechanism studies indicate that MPDMS exerts multiple effects, including cathode surface passivation, solvation structure tuning, electrolyte uptake enhancement, and mechanical stress relief. This work provides an inspiring route to realize high-voltage application of lithium-ion battery technology.

13.
Langmuir ; 38(5): 1689-1697, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35084856

RESUMEN

Ultrafine SnO2/Sn nanoparticles encapsulated into an adjustable meso-/macroporous carbon matrix have been successfully fabricated by the in situ SiOx sacrificial strategy. The control over the void space in the carbon matrix effectively improves the accessibility of the SnO2/Sn toward an electrolyte solution. More importantly, the void space also provides an efficient means to accommodate the mechanical stress caused by the volume change of the SnO2/Sn over cycles. As a result, the enhanced electrolyte accessibility and suppressed mechanical stress improve the electrochemical performance regarding reversible capacity, cyclic stability, and rate capability. A reversible capacity of 1105 mAh g-1 is still retained after 290 cycles at 200 mAg-1, and the capacity still can keep at 107 mAh g-1 at a high current density of 10 A g-1.

14.
ACS Appl Mater Interfaces ; 13(48): 57107-57117, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34797642

RESUMEN

Increasing the working voltage of lithium-ion batteries (LIBs) is an efficient way to increase energy density. However, high voltage triggers excessive electrolyte decomposition at the electrode-electrolyte interfaces, where the electrochemical performance such as cyclic stability and rate capability is seriously deteriorated. A new synergistic positive and passive approach is proposed in this work to construct a stable electrode-electrolyte interface at high voltage. As a positive approach, inorganic lithium sulfide salt (Li2S) is used as an electrolyte additive to build a stable cathode electrolyte interface (CEI) at the LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode surface. In a passive way, acetonitrile (AN) is applied as a solvent additive to suppress oxidative decomposition of a carbonate electrolyte via preferential solvation with a lithium ion. Because of the synergistic interaction between the positive and passive approaches, the cyclic stabilities of NCM523/Li cells improved with a tiny amount of Li2S (0.01 mg mL-1) and AN (0.5 vol %). The capacity retention increased to 80.74% after 200 cycles compared to the cells with the blank electrolyte (67.98%) and AN-containing electrolyte (75.8%). What is more, the capacity retention of the NCM523/graphite full cell is increased from 65 to 81% with the addition of the same amount of Li2S and AN after 180 cycles. The mechanism is revealed on the basis of the theoretical calculations and various characterizations. The products derived from the preferential adsorption and oxidation of Li2S on the surface of NCM523 effectively increase the content of inorganic ingredients. However, the presence of AN prevents oxidation of the solvent. This study provides new principle guiding studies on a high-voltage lithium-ion battery with excellent electrochemical performance.

15.
ACS Appl Mater Interfaces ; 13(16): 18648-18657, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33860665

RESUMEN

Increasing working voltage of cathode has been identified as one of the most promising strategies to increase energy density of the lithium-ion batteries. It is of crucial importance to suppress side reactions and control the formation of a cathode electrolyte interface (CEI) on the cathode surface in a high voltage range. In this work, sulfur is utilized to increase the working voltage of LiNi0.5Co0.2Mn0.3O2(NCM 523) to 4.5 V as demonstrated by both the NCM523/Li half-cell and NCM 523/graphite full cell. When a tiny amount of sulfur (0.1 mg mL-1) is added to the blank electrolyte of ethylene carbonate (EC) and dimethyl carbonate (DMC) (3:7 by volume), the cycling stability and rate performance are greatly improved in the NCM523/Li half-cell. The capacity retention over 200 cycles at 170 mA g-1 (1.0 C) is increased from 61.2 to 82.0%. The capacity at a high current density of 850 mA g-1 (5.0 C) is increased from 92 mAh g-1 to 120 mAh g-1. Because the addition of sulfur also enhances the performance of the Li/graphite half-cell, improved performance is demonstrated by the NCM 523/graphite full cell as well. The mechanism is interpreted based on various characterizations. It is revealed that the preferential oxidation of sulfur at the cathode surface suppress decomposition of electrolyte solvent. Because only a tiny amount of sulfur is added into the electrolyte solution, excessive decomposition of sulfur is avoided, leading to improved electrochemical performance.

16.
ACS Appl Mater Interfaces ; 13(12): 14728-14740, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33734685

RESUMEN

Gold/titanium dioxide (Au/TiO2) nanohybrid materials have been widely applied in various fields because of their outstanding optical and photocatalytic performance. By state-of-the-art polymer templating, it is possible to make uniform nanostructured TiO2 layers with potentially large-scale processing methods. We use customized polymer templating to achieve TiO2 nanostructures with different morphologies. Au/TiO2 hybrid thin films are fabricated by sputter deposition. An in-depth understanding of the Au morphology on the TiO2 templates is achieved with in situ grazing-incidence small-angle X-ray scattering (GISAXS) during the sputter deposition. The resulting Au nanostructure is largely influenced by the TiO2 template morphology. Based on the detailed understanding of the Au growth process, characteristic distances can be selected to achieve tailored Au nanostructures at different Au loadings. For selected sputter-deposited Au/TiO2 hybrid thin films, the optical response with a tailored localized surface plasmon resonance is demonstrated.

17.
Nanoscale Adv ; 3(7): 1942-1953, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36133098

RESUMEN

Antimony (Sb) has been regarded as one of the most promising anode materials for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) and attracted much attention in recent years. Alleviating the volumetric effect of Sb during charge and discharge processes is the key point to promote Sb-based anodes to practical applications. Carbon dioxide (CO2) activation is applied to improve the rate performance of the Sb/C nanohybrid anodes caused by the limited diffusion of Li/Na ions in excessive carbon components. Based on the reaction between CO2 and carbon, CO2 activation can not only reduce the excess carbon content of the Sb/C nanohybrid but also create abundant mesopores inside the carbon matrix, leading to enhanced rate performance. Additionally, CO2 activation is also a fast and facile method, which is perfectly suitable for the fabrication system we proposed. As a result, after CO2 activation, the average capacity of the Sb/C nanohybrid LIB anode is increased by about 18 times (from 9 mA h g-1 to 160 mA h g-1) at a current density of 3300 mA g-1. Moreover, the application of the CO2-activated Sb/C nanohybrid as a SIB anode is also demonstrated, showing good electrochemical performance.

18.
ACS Appl Mater Interfaces ; 12(41): 47002-47009, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32955236

RESUMEN

Nanostructured Ge is considered a highly promising material for Li-ion battery applications as Ge offers high specific capacity and Li-ion diffusivity, while inherent mesoporous nanostructures can contribute resistance against capacity fading as typically induced by high volume expansion in bulk Ge films. Mesoporous GeOx/Ge/C films are synthesized using K4Ge9 Zintl clusters as a Ge precursor and the amphiphilic diblock copolymer polystyrene-block-polyethylene oxide as a templating tool. As compared to a reference sample without post-treatment, enhanced surface-to-volume ratios are achieved through post-treatment with a poor-good azeotrope solvent mixture. High capacities of over 2000 mA h g-1 are obtained with good stability over 300 cycles. Information from morphological and compositional characterization for both reference and post-treated sample suggests that the good electrochemical performance originates from reversible GeO2 conversion reactions.

19.
ACS Appl Mater Interfaces ; 12(39): 43785-43797, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32915533

RESUMEN

Silicon is regarded as one of the most promising next generation lithium-ion battery anodes due to its exceptional theoretical capacity, appropriate voltage profile, and vast abundance. Nevertheless, huge volume expansion and drastic stress generated upon lithiation cause poor cyclic stability. It has been one of the central issues to improve cyclic performance of silicon-based lithium-ion battery anodes. Constructing hierarchical macro-/mesoporous silicon with a tunable pore size and wall thickness is developed to tackle this issue. Rational structure design, controllable synthesis, and theoretical mechanical simulation are combined together to reveal fundamental mechanisms responsible for an improved cyclic performance. A self-templating strategy is applied using Stöber silica particles as a templating agent and precursor coupled with a magnesiothermic reduction process. Systematic variation of the magnesiothermic reduction time allows good control over the structures of the porous silicon. Finite element mechanical simulations on the porous silicon show that an increased pore size and a reduced wall thickness generate less mechanical stress in average along with an extended lithiation state. Besides the mechanical stress, the evolution of strain and displacement of the porous silicon is also elaborated with the finite element simulation.

20.
Chem Asian J ; 15(17): 2674-2680, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32608136

RESUMEN

Binders play a crucial role in maintaining mechanical integrity of electrodes in lithium-ion batteries. However, the conventional binders lack proper elasticity, and they are not suitable for high-performance silicon anodes featuring huge volume change during cycling. Herein, a poly(siloxane imide) copolymer (PSI) has been designed, synthesized, and utilized as a binder for silicon-based anodes. A rigidness/softness coupling mechanism is demonstrated by the PSI binder, which can accommodate volume expansion of the silicon anode upon lithiation. The electrochemical performance in terms of cyclic stability and rate capability can be effectively improved with the PSI binder as demonstrated by a silicon nanoparticle anode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...