Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Food Chem X ; 22: 101429, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38756466

RESUMEN

Changes in physio-biochemical metabolism, phenolics and antioxidant capacity during germination were studied in eight different wheat varieties. Results showed that germination enhanced sprout growth, and caused oxidative damage, but enhanced phenolics accumulation. Ferulic acid and p-coumaric acid were the main phenolic acids in wheat sprouts, and dihydroquercetin, quercetin and vitexin were the main flavonoids. The phenolic acid content of Jimai 44 was the highest on the 2th and 4th day of germination, and that of Bainong 307 was the highest on the 6th day. The flavonoid content of Hei jingang was the highest during whole germination. The enzymes activities of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H) and 4-coumarate coenzyme A ligase (4CL) were up-regulated. The activities of catalase, polyphenol oxidase and peroxidase were also activated. Antioxidant capacity of wheat sprouts was enhanced. The results provided new ideas for the production of naturally sourced phenolic rich foods.

2.
Foods ; 13(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397603

RESUMEN

The oligosaccharides extracted from the seeds of peas, specifically consisting of raffinose, stachyose, and verbascose, fall under the category of raffinose family oligosaccharides (RFOs). The effect of RFOs on intestinal microflora and the anti-inflammatory mechanism were investigated by in vitro fermentation and cell experiments. Firstly, mouse feces were fermented in vitro and different doses of RFOs (0~2%) were added to determine the changes in the representative bacterial community, PH, and short-chain fatty acids in the fermentation solution during the fermentation period. The probiotic index was used to evaluate the probiotic proliferation effect of RFOs and the optimal group was selected for 16S rRNA assay with blank group. Then, the effects of RFOs on the inflammatory response of macrophage RAW264.7 induced by LPS were studied. The activity of cells, the levels of NO, ROS, inflammatory factors, and the expression of NF-κB, p65, and iNOS proteins in related pathways were measured. The results demonstrated that RFOs exerted a stimulatory effect on the proliferation of beneficial bacteria while concurrently inhibiting the growth of harmful bacteria. Moreover, RFOs significantly enhanced the diversity of intestinal flora and reduced the ratio of Firmicutes-to-Bacteroides (F/B). Importantly, it was observed that RFOs effectively suppressed NO and ROS levels, as well as inflammatory cytokine release and expression of NF-κB, p65, and iNOS proteins. These findings highlight the potential of RFOs in promoting intestinal health and ameliorating intestinal inflammation.

3.
Medicine (Baltimore) ; 102(45): e35837, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37960731

RESUMEN

Splicing factor proline- and glutamine-rich (SFPQ) can interact with RNAs to regulate gene expression. The function of SFPQ in the immunotherapy of non-small cell lung cancer (NSCLC) is investigated in this study. H1299 and A549 cells were transfected with shSFPQ plasmid. Cell counting kit-8 (CCK-8) and cell clone formation were utilized to detect survival and proliferation. Programmed death-ligand 1 (PD-L1) and SFPQ were detected in NSCLC patients treated with anti-PD-L1 antibody. Dual-luciferase assays, RNA immunoblotting, RNA pull-down, and mRNA stability assay were applied to verify the regulation of PD-L1 with SFPQ. Human peripheral blood mononuclear cells (PBMC)-derived dendritic cells were loaded with irradiated A549 and H1299 cells, which were cultured with autologous CD8+T cells and tumor cells to perform in vitro tumor-specific cytotoxic T lymphocytes (CTL) cytotoxicity analysis. SFPQ silencing inhibited the survival and proliferation of H1299 and A549 cells with down-regulated PD-L1 expression. PD-L1 and SFPQ expression were markedly higher in anti-PD-L1 antibody treatment responders compared to non-responders, which showed a positive Pearson correlation (R = 0.76, P < .001). SFPQ up-regulated the relative mRNA and protein expression of PD-L1 by binding to the PD-L1 3'UTR to slow the decay of PD-L1 mRNA. SFPQ silencing promoted the killing effect of CTL on A549 and H1299 cells. SFPQ up-regulates PD-L1 expression by binding with PD-L1 3'UTR to slow the decay of PD-L1 mRNA, and SFPQ silencing promotes CTL-mediated cytotoxicity on NSCLC cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Regiones no Traducidas 3' , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Glutamina , Leucocitos Mononucleares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Factores de Empalme de ARN/genética , Linfocitos T Citotóxicos/metabolismo , Factor de Empalme Asociado a PTB/genética , Factor de Empalme Asociado a PTB/metabolismo
4.
Mol Med Rep ; 28(3)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37449526

RESUMEN

Adipose tissue­derived mesenchymal stem cells (ADMSCs) differentiate into cardiomyocytes and may be an ideal cell source for myocardial regenerative medicine. Ghrelin is a gastric­secreted peptide hormone involved in the multilineage differentiation of MSCs. To the best of our knowledge, however, the role and potential downstream regulatory mechanism of ghrelin in cardiomyocyte differentiation of ADMSCs is still unknown. The mRNA and protein levels were measured by reverse transcription­quantitative PCR and western blotting. Immunofluorescence staining was used to show the expression and cellular localization of cardiomyocyte markers and ß­catenin. RNA sequencing was used to explore the differentially expressed genes (DEGs) that regulated by ghrelin. The present study found that ghrelin promoted cardiomyocyte differentiation of ADMSCs in a concentration­dependent manner, as shown by increased levels of cardiomyocyte markers GATA binding protein 4, α­myosin heavy chain (α­MHC), ISL LIM homeobox 1, NK2 homeobox 5 and troponin T2, cardiac type. Ghrelin increased ß­catenin accumulation in nucleus and decreased the protein expression of secreted frizzled­related protein 4 (SFRP4), an inhibitor of Wnt signaling. RNA sequencing was used to determine the DEGs regulated by ghrelin. Functional enrichment showed that DEGs were more enriched in cardiomyocyte differentiation­associated terms and Wnt pathways. Dead­box helicase 17 (DDX17), an upregulated DEG, showed enhanced mRNA and protein expression levels following ghrelin addition. Overexpression of DDX17 promoted protein expression of cardiac­specific markers and ß­catenin and enhanced the fluorescence intensity of α­MHC and ß­catenin. DDX17 upregulation inhibited protein expression of SFRP4. Rescue assay confirmed that the addition of SFRP4 partially reversed ghrelin­enhanced protein levels of cardiac­specific markers and the fluorescence intensity of α­MHC. In conclusion, ghrelin promoted cardiomyocyte differentiation of ADMSCs by DDX17­mediated regulation of the SFRP4/Wnt/ß­catenin axis.


Asunto(s)
Células Madre Mesenquimatosas , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Ghrelina/farmacología , Ghrelina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Diferenciación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Vía de Señalización Wnt , ARN Mensajero/metabolismo
5.
Plants (Basel) ; 12(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447056

RESUMEN

In this study, the effects of γ-aminobutyric acid (GABA) on physio-biochemical metabolism, phenolic acid accumulation, and antioxidant system enhancement in germinated wheat under drought stress was investigated. The results showed that exogenous GABA reduced the oxidative damage in wheat seedlings caused by drought stress and enhanced the content of phenolics, with 1.0 mM being the most effective concentration. Six phenolic acids were detected in bound form, including p-hydroxybenzoic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, and sinapic acid. However, only syringic acid and p-coumaric acid were found in free form. A total of 1.0 mM of GABA enhanced the content of total phenolic acids by 28% and 22%, respectively, compared with that of drought stress, on day four and day six of germination. The activities of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H) and 4-coumarate coenzyme A ligase (4CL) were activated by drought stress plus GABA treatment. Antioxidant enzyme activities were also induced. These results indicate that GABA treatment may be an effective way to relieve drought stress as it activates the antioxidant system of plants by inducing the accumulation of phenolics and the increase in antioxidant enzyme activity.

6.
J Bioenerg Biomembr ; 55(3): 195-205, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37237241

RESUMEN

Adipose tissue-derived mesenchymal stem cells (ADSCs) have promising effects on nerve repair due to the differentiation ability to neural cells. Ghrelin has been shown to promote the neural differentiation of ADSCs. This work was designed to explore its underlying mechanism. Herein, we found high expression of LNX2 in ADSCs after neuronal differentiation. Knockdown of LNX2 might block neuronal differentiation of ADSCs, as evidenced by the decreased number of neural-like cells and dendrites per cell, and the reduced expressions of neural markers (including ß-Tubulin III, Nestin, and MAP2). We also demonstrated that LNX2 silencing suppressed the nuclear translocation of ß-catenin in differentiated ADSCs. Luciferase reporter assay indicated that LNX2 inhibited wnt/ß-catenin pathway by reducing its transcriptional activity. In addition, results showed that LNX2 expression was increased by ghrelin, and its inhibition diminished the effects of ghrelin on neuronal differentiation. Altogether, the results suggest that LNX2 is involved in the role of ghrelin to facilitate neuronal differentiation of ADSCs.


Asunto(s)
Ghrelina , Células Madre Mesenquimatosas , beta Catenina , beta Catenina/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Ghrelina/farmacología , Ghrelina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neuronas/metabolismo , Humanos
7.
Food Chem ; 419: 136025, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030205

RESUMEN

A portable fluorescence immunosensor based on the CdSe/CdS/ZnS quantum dots (QDs) with multiple-shell structure was fabricated for the precise quantification of olaquindox (OLA). The QDs labeled anti-OLA antibody used as bioprobe played an important role in the design and preparation of a lateral flow test strip. Due to the strong fluorescent intensity of QDs, the sensitivity is greatly improved. The quantitative results were obtained using a fluorescent strip scan reader within 8 min, and the calculated limit of detection for OLA at 0.12 µg/kg, which was 2.7 times more sensitive than that of the conventional colloidal gold-based strips method. Acceptable recovery of 85.0%-95.5% was obtained by the spiked samples. This newly established QDs-based strip immunoassay method is suitable for the on-site detection and rapid initial screening of OLA in swine feedstuff, and is potentially applied for the detection of other veterinary drugs to ensure food safety.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Animales , Porcinos , Puntos Cuánticos/química , Compuestos de Cadmio/química , Inmunoensayo/métodos , Compuestos de Selenio/química , Compuestos de Zinc/química , Sulfuros/química
8.
Chemosphere ; 322: 138177, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36806811

RESUMEN

Atmospheric deposition of Cd, from anthropogenic activities, can be directly deposited onto and absorbed into wheat plants, yet, how foliar absorbed Cd is translocated in wheat plants is not well understood. A pot experiment investigated foliar Cd application on the accumulation and distribution of heavy metals in various wheat parts. Wheat was grown in a Cd/heavy metal contaminated soil, and from grain heading to the filling stage, 0, 10, 20, 30 and 40 mg kg-1 Cd solution was sprayed repeatedly on leaves (grain heads were covered). Foliar Cd application had no effect on grain yield and Cd concentration (3.01-3.51 mg kg-1 for all treatments), while increased flag leaf blade and sheath Cd concentrations by 1.06-2.77 and 0.00-0.66 times, respectively. Cadmium concentration in the center of the peduncle, from the 40 mg kg-1 Cd solution treatment, was 1.41 times that of the control (10.3 vs 7.30 mg kg-1). Foliar Cd application also increased Cd accumulation (concentration × mass) of the flag leaf blade and sheath. Rachis and grain Pb concentrations were reduced, while stem Pb concentration was increased by Cd application. Cadmium application negatively affected whole plant Ni accumulation and concentration of certain wheat parts; Ni absorption inhibition may have occurred in roots via the downward transport of Cd. Overall results implied that the predominant portion of foliar applied Cd was retained in leaves, while lesser portions migrated to peduncle or root and affected the absorption/distribution of other metals in wheat plants. These results are important for further discerning the mechanism of wheat grain Cd accumulation, especially when grain is raised in areas where atmospheric deposition of Cd (e.g., near smelting facilities) is an issue from an environmental and human health perspective.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Cadmio/análisis , Zinc/análisis , Triticum , Plomo , Contaminantes del Suelo/análisis , Grano Comestible/química , Suelo
9.
Bioengineered ; 13(5): 13689-13702, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35707851

RESUMEN

Diabetes is characterized by increased fracture risk. Evidence from in vivo studies is lacking for anti-fracture strategies in diabetes. Our microarray analyses predicted association of Toll-like receptor 9 (TLR9) with both diabetes and osteoporosis, which was the focus of this work in a murine model of type II diabetic osteoporosis (T2DOP). A T2DOP model with fracture was established in TLR9 knockout (TLR9-/-) mice, which were then treated with the NF-κB signaling pathway inhibitor (PDTC) and activator (TNF-α). The obtained data suggested that TLR9 knockout augmented regeneration of bone tissues and cartilage area in the callus, and diminished fibrous tissues in T2DOP mice. Moreover, TLR9 depletion significantly affected bone mineral density (BMD), bone volume/tissue volume (BV/TV), connectivity density, trabecular number, trabecular separation and trabecular thickness, thus promoting fracture recovery. Bone morphology and structure were also improved in response to TLR9 depletion in T2DOP mice. TLR9 depletion inactivated NF-κB signaling in T2DOP mice. PDTC was found to enhance fracture healing in T2DOP mice, while TNF-α negated this effect. Collectively, these data indicate that TLR9 depletion may hold anti-fracture properties, making it a potential therapeutic target for T2DOP.Abbreviations: Diabetic osteoporosis (DOP); bone mineral density (BMD); Toll-like receptors (TLRs); type 2 diabetes (T2D); Toll-like receptor 9 (TLR9); nuclear factor-kappaB (NF-κB); streptozotocin (STZ); type 2 diabetic osteoporosis (T2DOP); Gene Expression Omnibus (GEO); Kyoto encyclopedia of genes and genomes (KEGG); pyrrolidine dithiocarbamate (PDTC); computed tomography (CT); Hematoxylin-eosin (HE); bone morphogenetic protein 7 (BMP7); analysis of variance (ANOVA).


Asunto(s)
Diabetes Mellitus Tipo 2 , Osteoporosis , Receptor Toll-Like 9 , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Curación de Fractura/genética , Eliminación de Gen , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Osteoporosis/complicaciones , Osteoporosis/genética , Transducción de Señal/genética , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
10.
J Trace Elem Med Biol ; 69: 126877, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34678598

RESUMEN

BACKGROUND: To investigate the effects of lead exposure and IGF1R inhibitor AG1024 on the expression of IGF1R and IGFBP3 in PC12 cells. It is clear that the mechanism of the related proteins inducing AD is regulated by them, thus providing theoretical guidance for the prevention and treatment of lead poisoning. METHODS: This study is mainly used PC12 neuron cell to cultivate and establish a corresponding lead exposure model, deal with cells with different concentrations of lead acetate respectively, divide the experiment into control group, 1 µmoL/L PbAc, 10 µmoL/L PbAc group, IGF1R inhibitor (AG1024) group, IGF1R inhibitor group (AG1024) + 1 µmoL/L PbAc group, IGF1R inhibitor group (AG1024) + 10 µmoL/L PbAc group, respective contamination's three periods of time 24 h, 48 h, and 72 h. Lead exposure dose on cell proliferation was examined by MTT. The protein expression of IGF1R and IGFBP3 in PC12 cells were tested by western blotting and immunohistochemistry, The expression of Aß40 and Aß42 in cell supernatant was determined by ELISA. RESULTS: Compared with the control group, the proliferation of the cells in the high-dose lead-exposed group was significantly inhibited (P < 0.05), and the expression of IGF1R and IGFBP3 was significantly decreased (P < 0.05); the contents of Aß40 and Aß42 were not statistically significant among the groups (P > 0.05). CONCLUSION: This study shows that lead can obviously down-regulate the expression of IGF1R and IGFBP3, lead and inhibitor can inhibit the proliferation of cells, promote the tendency of apoptosis, and damage the nervous system.


Asunto(s)
Péptidos beta-Amiloides , Plomo , Animales , Plomo/toxicidad , Células PC12 , Fragmentos de Péptidos , Ratas
11.
Front Genet ; 12: 635250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889178

RESUMEN

Many works have reported that protein folding rates are influenced by the characteristics of amino acid sequences and protein structures. However, few reports on the problem of whether the corresponding mRNA sequences are related to the protein folding rates can be found. An mRNA sequence is regarded as a kind of genetic language, and its vocabulary and phraseology must provide influential information regarding the protein folding rate. In the present work, linear regressions on the parameters of the vocabulary and phraseology of mRNA sequences and the corresponding protein folding rates were analyzed. The results indicated that D 2 (the adjacent base-related information redundancy) values and the GC content values of the corresponding mRNA sequences exhibit significant negative relations with the protein folding rates, but D 1 (the single base information redundancy) values exhibit significant positive relations with the protein folding rates. In addition, the results show that the relationships between the parameters of the genetic language and the corresponding protein folding rates are obviously different for different protein groups. Some useful parameters that are related to protein folding rates were found. The results indicate that when predicting protein folding rates, the information from protein structures and their amino acid sequences is insufficient, and some information for regulating the protein folding rates must be derived from the mRNA sequences.

12.
Ecotoxicol Environ Saf ; 211: 111917, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33497860

RESUMEN

Lead (Pb) is a heavy metal environmental pollutant that can cause functional damage and anemia of immune organs. More and more evidence indicate that the toxicity of lead was related to apoptosis driven by oxidative stress and endoplasmic reticulum stress. This article mainly discusses the protective effect and mechanism of folic acid intervention on lead-induced spleen injury and apoptosis. In this study, Sprague-Dawley rats were randomly divided into control group, lead exposure group (0.2% lead acetate), folic acid + lead group (0.4 mg/kg folic acid and 0.2% lead acetate), and folic acid group (0.4 mg/kg folic acid). By recording and calculating the rat's initial body weight, final body weight, net weight gain, daily weight gain, and spleen index, observe the rat's weight change and spleen weight. And adopt the immunofluorescence staining method to determine the expression level of NrF2, HO-1, GRP78, CHOP protein in the spleen. The results showed that The 0.4 mg/kg folic acid diet did not significantly improve in the body weight and spleen index of lead-exposed rats (P > 0.05). While compared with the control group, the expression levels of HO-1 and CHOP protein were significantly increased in the lead exposure group (P < 0.05), and the expression levels of HO-1 and CHOP protein were significantly reduced in the folic acid intervention group (P < 0.05). In conclusion, lead exposure increased the expression levels of HO-1 and CHOP in the spleen of rats, and caused damage to the spleen. Folic acid down-regulated the expression levels of HO-1 and CHOP proteins through the two pathways of NrF2/HO-1 and GRP78/CHOP, thereby exerting a certain protective effect and alleviating the spleen caused by lead-induced oxidative stress and endoplasmic reticulum stress damage.


Asunto(s)
Ácido Fólico/farmacología , Compuestos Organometálicos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Bazo/efectos de los fármacos , Acetatos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácido Fólico/metabolismo , Plomo/metabolismo , Masculino , Factor 2 Relacionado con NF-E2 , Ratas , Ratas Sprague-Dawley , Bazo/metabolismo , Bazo/fisiología
13.
Biol Trace Elem Res ; 199(4): 1414-1424, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32557100

RESUMEN

Calsyntenin-2 (Clstn2) and calsyntenin-3 (Clstn3) are the members of the cadherin superfamily and function to regulate the postsynaptic activity. Both proteins are known to play an important role in memory and learning. This study was designed to test the hypothesis that exposure of mothers to Pb in drinking water may alter the expression of Clstn2 and Clstn3 in offspring, which contributes to the Pb-induced learning deficiency. Pregnant mice were exposed to Pb in drinking water as Pb acetate from gestation to weaning. At the postnatal day 21, the learning and memory ability of pups was tested by Morris water maze, and the blood and brain tissues from pups were collected for metal and protein analyses. Data showed that perinatal Pb exposure resulted in a dose-dependent increase of Pb concentrations in blood (6-20-fold), hippocampus (2-7-fold), and cerebral cortex (2-8-fold) in offspring, as compared to controls (p < 0.05).The ability of learning and memory was decreased in lead exposure group, as compared to controls (p < 0.05). Both immunofluorescence and Western blot analyses revealed a striking difference in the expression of Clstn2 vs. Clstn3 following perinatal Pb exposure. In pregnant mice exposed to 0.1%, 0.2%, and 0.5% Pb, the expression of Clstn2 in offspring showed a Pb dose-related decrease by 39.2%, 76.5%, and 96.1% in hippocampus and by12.5%, 59.4%, and 78.1% in cerebral cortex, respectively (p < 0.05). In contrast, Clstn3 expression in these offspring brain regions was significantly increased (p < 0.05), after perinatal Pb exposure. The nature of Pb differential effect on Clstn2 and Clstn3 remains unknown. These observations suggest that Clstn2 and Clstn3 may have different roles in synaptic development and differentiation. Pb-induced learning defects may partly relate to the altered expression of calsyntenin proteins.


Asunto(s)
Plomo , Efectos Tardíos de la Exposición Prenatal , Animales , Proteínas de Unión al Calcio , Femenino , Hipocampo , Plomo/toxicidad , Aprendizaje , Aprendizaje por Laberinto , Proteínas de la Membrana , Memoria , Ratones , Embarazo , Destete
14.
Sci Total Environ ; 766: 142191, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33097254

RESUMEN

Diabetic patients often have a heightened risk of cardiomyopathy, even in the absence of traditional risk factors such as hypertension and atherosclerotic coronary artery disease. Diabetic cardiomyopathy is characterized by a typical cardiomyopathy specific to diabetes, the pathogenesis of which has yet to be fully elucidated. As a well-documented oncogenic long noncoding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been implicated in a variety of pathological processes, including diabetic complications. This study aimed to evaluate the functional roles of MALAT1 in the pathogenesis of diabetic cardiomyopathy. Spontaneously diabetic (db/db) C57BL/Ks mice were employed to establish diabetic cardiomyopathy models in vivo and high glucose (HG)-cultured mouse cardiomyocytes for myocardial damage models in vitro. Mouse left ventricular volume and function were evaluated by echocardiography, while the myocyte cross-sectional area was calculated to evaluate the degree of myocardial hypertrophy. TUNEL staining and flow cytometric analysis were performed to evaluate myocardial damage and cardiomyocyte apoptosis. Silencing of MALAT1 was found to attenuate cardiac dysfunction and inhibit cardiomyocyte apoptosis in db/db mice and HG-cultured mouse cardiomyocytes. MALAT1 recruited the histone methyltransferase EZH2 to the miR-22 promoter region and inhibited its expression. EZH2 induced an increased in the expression of ATP-binding cassette transporter A1 (ABCA1), which was identified to be a target gene of miR-22. Silencing of EZH2 was found to improve cardiac function and prevent cardiomyocyte apoptosis in db/db mice and HG-cultured mouse cardiomyocytes in the presence of MALAT1, suggesting that MALAT1 mediated myocardial damage by recruiting EZH2 to the miR-22 promoter. Taken together, this study's findings provide evidence confirming our hypothesis, suggesting the involvement of MALAT1 in the processes of cardiac function and cardiomyocyte apoptosis via the EZH2/miR-22/ABCA1 signaling cascade, which has potential therapeutic implications for the understanding of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Neoplasias Pulmonares , MicroARNs , Adenocarcinoma del Pulmón , Animales , Apoptosis , Cardiomiopatías Diabéticas/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Histona Metiltransferasas , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Miocitos Cardíacos , Regiones Promotoras Genéticas
15.
Int J Biol Macromol ; 167: 845-853, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33181209

RESUMEN

A water-soluble glucose-rich polysaccharide from dried 'Shixia' longan pulp (LPsx) has been isolated for the first time, and its structure and immuno-regulatory mechanism were studied. LPsx is a hetero-polysaccharide with the average molecular weight 4102 g/mol. It was mainly consisted of glucose (95.9%), and small proportions of arabinose (2.1%), galactose (1.0%), mannose (0.6%), and xylose (0.4%). As analyzed by NMR, LPsx was mainly composed of (1 â†’ 6)-α-d-glucose and (1 â†’ 6)-ß-d-glucose, branched with α-d-glucose-(1→. The immunomodulatory activity study showed that LPsx significantly increased the phagocytosis of macrophages, and strongly promoted the production of NO, IL-1ß, IL-6 and TNF-α. Moreover, LPsx could inhibit the inflammatory response induced by lipopolysaccharide. The immuno-regulatory mechanism of LPsx was studied using RNA- sequencing and receptors activity analyses. It was found that LPsx induced macrophage activation via Ca2+ and CR3-mediated MAPKs and PI3K-AKT signaling pathways. The results would be helpful for revealing the health promoting mechanism of dried 'Shixia' longan in traditional Chinese medicine.


Asunto(s)
Glucosa/química , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polisacáridos/química , Sapindaceae/química , Animales , Calcio/metabolismo , Citocinas/biosíntesis , Expresión Génica , Antígeno de Macrófago-1/metabolismo , Espectroscopía de Resonancia Magnética , Medicina Tradicional China , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Peso Molecular , Monosacáridos/química , Fagocitosis , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/aislamiento & purificación , Polisacáridos/aislamiento & purificación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Receptores de Superficie Celular/metabolismo
16.
Biochem Cell Biol ; 98(6): 676-682, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33167678

RESUMEN

Although the abundance of long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) in lung cancer has been well researched, the underlying mechanisms behind its effects were unknown. Here we investigated the molecular events regulating PVT1 in lung cancer. The pro-proliferative property of PVT1 was examined using a xenograft tumor model. Transwell chambers were used to analyze the impact of PVT1 expression on cell invasiveness and migration. In vivo metastasis was examined by tail-vein-injection in mice. Direct binding of miR-128 to PVT1 was investigated using a probe pulldown assay. The relative expression levels of miR-128 and PVT1 were quantified by real-time polymerase chain reaction and Western blotting. We show here that when PVT1 is amplified, there is a poor survival prognosis for patients with lung cancer. Elevated levels of PVT1 promoted lung cancer cell proliferation and metastasis, both in vitro and in vivo. Mechanistically, we found that PVT1 competes endogenously with miR-128 in the regulation of vascular endothelial growth factor C (VEGFC) expression, which is significantly associated with an unfavorable prognosis in lung cancer. We identified that copy number amplification significantly contributes to the high level of PVT1 transcripts in lung cancer, which promotes cell proliferation and metastatic behavior via modulating VEGFC expression by endogenous competition with miR-128.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/biosíntesis , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Células A549 , Animales , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética , Factor C de Crecimiento Endotelial Vascular/genética
17.
Huan Jing Ke Xue ; 41(2): 970-978, 2020 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-32608759

RESUMEN

A hydroponic experiment was conducted to explore the differences in growth status and Cd accumulation characteristics of two Brassica napus L. cultivars (QY-1 and SYH) under different concentrations of cadmium (Cd) stress (0, 2, and 5 mg·L-1). The Cd subcellular compartmentalization and antioxidant enzyme activities were determined to elucidate the intrinsic mechanism of the differences in the Cd accumulation capacity between the two cultivars of Brassica napus L. Furthermore, field trials were conducted to further verify the differences in phytoremediation of the two cultivars. Results show that neither of the cultivars exhibited obvious growth inhibition under Cd stress. Under the 2 mg·L-1 Cd condition, there were no significant differences in shoot Cd concentrations between the two cultivars. Under 5 mg·L-1 Cd condition, however, the Cd concentrations in both shoot and root of SYH were significantly higher than that of QY-1, which increased by 32.05% and 99.57%, respectively. In addition, the bioconcentration factor (BCF) of the root in SYH is significantly higher than that of QY-1. The subcellular Cd distribution in leaves of the two cultivars of Brassica napus L. showed that, with an increase of Cd stress, Cd concentrations of heat stable protein (HSP) and metal-rich granule (MRG) fractions in leaves significantly increased by 143.69% and 118.91% for QY-1, and by 63.34% and 118.91% for SYH. Thus, the segregation of Cd in HSP and MRG, which was reported to be biological detoxified metal fractions (BDM), might play an important role in the detoxification of Brassica napus L. at a subcellular level under Cd stress. Moreover, the distribution of Cd in the cellular debris fraction might be another important factor contributing to the differences in Cd accumulation of the two Brassica napus L. cultivars, which was 4.41 times higher in SYH than in QY-1 under Cd stress. The results of the antioxidant enzyme activities of two Brassica napus L. cultivars showed that, under the 5 mg·L-1 Cd condition, the antioxidant enzyme system may represent an important detoxification mechanism for QY-1 to cope with stress induced by high concentrations of Cd, while SYH is more effective in reducing the toxicity of Cd by separation of Cd into BDM fractions. The results of the field trial confirmed that the Cd concentrations in the above- and underground parts of SYH were 2.34 and 1.43 times higher than in QY-1, respectively. Therefore, SYH possess a higher Cd phytoextraction capacity than QY-1, and might be a good candidate for the remediation of moderate and mildly Cd-contaminated farmland.


Asunto(s)
Brassica napus/metabolismo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Raíces de Plantas , Brotes de la Planta
18.
Kaohsiung J Med Sci ; 36(6): 405-416, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32003536

RESUMEN

Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent cells that can differentiate into various cell types. This study aimed to investigate the effect of ghrelin on the neural differentiation of rat ADSCs and underlying molecular mechanisms. Rat ADSCs were isolated and third-passage ADSCs were used in this study. The isolated ADSCs were characterized by flow cytometry analysis for MSCs' surface expression markers as evidenced by positive for CD90, CD44, and CD29 and negative for CD34, CD45, and CD11b/2f/c. The multilineage differentiation of ADSCs was confirmed by adipogenic, osteogenic, and neural differentiation. After induction of neurogenesis, the differentiated cells were identified by development of neuron-like morphology and expression of neural markers including glial fibrillary acidic protein, Nestin, MAP2, and ß-Tubulin III using immunofluorescence and western blot. Ghrelin concentration dependently elevated the proportion of neural-like cells and branching dendrites, as well as upregulated the expression of neural markers. Further, the expression of nuclear ß-catenin, p-GSK-3ß, p-AKT, and p-mTOR was increased by ghrelin, indicating an activation of ß-catenin and AKT/mTOR signaling after the ghrelin treatment. Importantly, inhibition of ß-catenin or AKT/mTOR signaling suppressed ghrelin-induced neurogenesis. Therefore, we demonstrate that ghrelin promotes neural differentiation of ADSCs through the activation of ß-catenin and AKT/mTOR signaling pathways.


Asunto(s)
Adipocitos/efectos de los fármacos , Ghrelina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , beta Catenina/genética , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Anticuerpos Heterófilos/farmacología , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica , Ghrelina/genética , Ghrelina/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Nestina/genética , Nestina/metabolismo , Neuronas/citología , Neuronas/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , beta Catenina/antagonistas & inhibidores , beta Catenina/metabolismo
19.
Biol Res ; 53(1): 5, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046779

RESUMEN

BACKGROUND: LincRNAs have been revealed to be tightly associated with various tumorigeneses and cancer development, but the roles of specific lincRNA on tumor-related angiogenesis was hardly studied. Here, we aimed to investigate whether linc-OIP5 in breast cancer cells affects the angiogenesis of HUVECs and whether the linc-OIP5 regulations are involved in angiogenesis-related Notch and Hippo signaling pathways. METHODS: A trans-well system co-cultured HUVECs with linc-OIP5 knockdown breast cancer cell MDA-MB-231 was utilized to study the proliferation, migration and tube formation abilities of HUVECs and alterations of related signaling indicators in breast cancer cells and their conditioned medium through a series of cell and molecular experiments. RESULTS: Overexpressed linc-OIP5, YAP1, and JAG1 were found in breast cancer cell lines MCF7 and MDA-MB-231 and the expression levels of YAP1 and JAG1 were proportional to the breast cancer tissue grades. MDA-MB-231 cells with linc-OIP5 knockdown led to weakened proliferation, migration, and tube formation capacity of co-cultured HUVECs. Besides, linc-OIP5 knockdown in co-cultured MDA-MB-231 cells showed downregulated YAP1 and JAG1 expression, combined with a reduced JAG1 level in conditioned medium. Furthermore, a disrupted DLL4/Notch/NRP1 signaling in co-cultured HUVECs were also discovered under this condition. CONCLUSION: Hence, linc-OIP5 in MDA-MB-231 breast cancer cells may act on the upstream of the YAP1/Notch/NRP1 signaling circuit to affect proliferation, migration, and tube formation of co-cultured HUVECs in a non-cellular direct contact way through JAG1 in conditioned medium. These findings at least partially provide a new angiogenic signaling circuit in breast cancers and suggest linc-OIP5 could be considered as a therapeutic target in angiogenesis of breast cancers.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/patología , Células Endoteliales de la Vena Umbilical Humana/citología , Neuropilina-1/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral , Western Blotting , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Inmunohistoquímica , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Proteínas Señalizadoras YAP
20.
Exp Anim ; 69(1): 34-44, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31353329

RESUMEN

Diabetic cardiomyopathy (DCM) is one of the cardiovascular complications of diabetes mellitus independent of hypertension, coronary disease, and other heart diseases. The development of DCM is multifactorial and hard to detect at an early stage. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1) is emerging as a regulator of DCM, the underlying mechanism of its role in DCM has not been elaborated yet. In this study, we established a mouse DCM model via streptozocin injection as evidenced by cell hypertrophy and cell apoptosis of myocardial tissue, and found that Malat1 expression was upregulated in the myocardium in DCM mice. Meanwhile, elevated expression of pro-apoptotic factors p53, p21, cleaved caspase 3, cleaved caspase 9 and BAX, and down-regulation of anti-apoptotic BCL-2 were observed in DCM myocardium. We further investigated the effect of Malat1 on cardiomyocytes under high glucose condition by silencing Malat1 with its specific short-hairpin RNA. Like in vivo, expression of Malat1 in cardiomyocytes was notably raised, remarkable cell apoptosis and changes in apoptosis-related factors were also observed following high glucose treatment. Besides, we validated that Malat1 acted as a sponge of miR-181a-5p. Inhibition of miR-181a-5p could, at least partially, abolish Malat1 knockdown-induced alteration in cardiomyocytes. In addition, p53, a critical regulator of apoptosis, was validated to be a downstream target of miR-181a-5p. In summary, our findings reveal that Malat1 knockdown attenuates high glucose-induced cardiomyocyte apoptosis via releasing miR-181a-5p, and this mechanism may provide us with new diagnosis target of DCM.


Asunto(s)
Apoptosis/genética , Cardiomiopatías Diabéticas/metabolismo , MicroARNs/genética , Miocitos Cardíacos/fisiología , ARN Largo no Codificante/genética , Animales , Cardiomiopatías Diabéticas/genética , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...