Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2326, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485720

RESUMEN

Transition metal oxides (TMOs) exhibit fascinating physicochemical properties, which originate from the diverse coordination structures between the transition metal and oxygen atoms. Accurate determination of such structure-property relationships of TMOs requires to correlate structural and electronic properties by capturing the global parameters with high resolution in energy, real, and momentum spaces, but it is still challenging. Herein, we report the determination of characteristic electronic structures from diverse coordination environments on the prototypical anatase-TiO2(001) with (1 × 4) reconstruction, using high-resolution angle-resolved photoemission spectroscopy and scanning tunneling microscopy/atomic force microscopy, in combination with density functional theory calculation. We unveil that the shifted positions of O 2s and 2p levels and the gap-state Ti 3p levels can sensitively characterize the O and Ti coordination environments in the (1 × 4) reconstructed surface, which show distinguishable features from those in bulk. Our findings provide a paradigm to interrogate the intricate reconstruction-relevant properties in many other TMO surfaces.

2.
Phys Rev Lett ; 130(3): 036203, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36763396

RESUMEN

Flat bands (FBs), presenting a strongly interacting quantum system, have drawn increasing interest recently. However, experimental growth and synthesis of FB materials have been challenging and have remained elusive for the ideal form of monolayer materials where the FB arises from destructive quantum interference as predicted in 2D lattice models. Here, we report surface growth of a self-assembled monolayer of 2D hydrogen-bond (H-bond) organic frameworks (HOFs) of 1,3,5-tris(4-hydroxyphenyl)benzene (THPB) on Au(111) substrate and the observation of FB. High-resolution scanning tunneling microscopy or spectroscopy shows mesoscale, highly ordered, and uniform THPB HOF domains, while angle-resolved photoemission spectroscopy highlights a FB over the whole Brillouin zone. Density-functional-theory calculations and analyses reveal that the observed topological FB arises from a hidden electronic breathing-kagome lattice without atomically breathing bonds. Our findings demonstrate that self-assembly of HOFs provides a viable approach for synthesis of 2D organic topological materials, paving the way to explore many-body quantum states of topological FBs.

3.
Nano Lett ; 21(1): 430-436, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33290081

RESUMEN

The existence of various quasiparticles of polarons because of electron-boson couplings plays important roles in determining electron transport in titanium dioxide (TiO2), which affects a wealth of physical properties from catalysis to interfacial superconductivity. In addition to the well-defined Fröhlich polarons whose electrons are dressed by the phonon clouds, it has been theoretically predicted that electrons can also couple to their own plasmonic oscillations, namely, the plasmonic polarons. Here we experimentally demonstrate the formation of plasmonic polarons in highly doped anatase TiO2 using angle-resolved photoemission spectroscopy. Our results show that the energy separation of plasmon-loss satellites follows a dependence on √n, where n is the electron density, manifesting the characteristic of plasmonic polarons. The spectral functions enable to quantitatively evaluate the strengths of electron-plasmon and electron-phonon couplings, respectively, providing an effective approach for characterizing the interplays among different bosonic modes in the complicate many-body interactions.

4.
Chem Commun (Camb) ; 56(64): 9158-9161, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32657301

RESUMEN

A strategy is proposed for modifying BiVO4 photoanode with CoNiO2 as a novel water oxidation cocatalyst to enhance PEC water splitting performance. The results show that CoNiO2 has the following functions: reducing photogenerated charge recombination centers; providing trapping sites to promote charge separation; improving the stability of the overall system; providing more active sites; and offering a lower overpotential. The BiVO4/CoNiO2 photoanode has a higher photocurrent density (1.16 mA cm-2 at 1.23 V vs. RHE), a lower onset potential (∼0.06 V vs. RHE), a larger IPCE (34.37%) and ABPE (0.163%), better stability and good rates of hydrogen evolution (0.0148 µmol cm-2 min-1) and oxygen evolution (0.0076 µmol cm-2 min-1). The strategy provides promising prospects for achieving efficient PEC water splitting performance using water oxidation cocatalysts.

5.
Nano Lett ; 19(8): 5304-5312, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31287705

RESUMEN

High pressure has been demonstrated to be a powerful approach of producing novel condensed-matter states, particularly in tuning the superconducting transition temperature (Tc) of the superconductivity in a clean fashion without involving the complexity of chemical doping. However, the challenge of high-pressure experiment hinders further in-depth research for underlying mechanisms. Here, we have successfully synthesized continuous layer-controllable SnSe2 films on SrTiO3 substrate using molecular beam epitaxy. By means of scanning tunneling microscopy/spectroscopy (STM/S) and Raman spectroscopy, we found that the strong compressive strain is intrinsically built in few-layers films, with a largest equivalent pressure up to 23 GPa in the monolayer. Upon this, unusual 2 × 2 charge ordering is induced at the occupied states in the monolayer, accompanied by prominent decrease in the density of states (DOS) near the Fermi energy (EF), resembling the gap states of CDW reported in transition metal dichalcogenide (TMD) materials. Subsequently, the coexistence of charge ordering and the interfacial superconductivity is observed in bilayer films as a result of releasing the compressive strain. In conjunction with spatially resolved spectroscopic study and first-principles calculation, we find that the enhanced interfacial superconductivity with an estimated Tc of 8.3 K is observed only in the 1 × 1 region. Such superconductivity can be ascribed to a combined effect of interfacial charge transfer and compressive strain, which leads to a considerable downshift of the conduction band minimum and an increase in the DOS at EF. Our results provide an attractive platform for further in-depth investigation of compression-induced charge ordering (monolayer) and the interplay between charge ordering and superconductivity (bilayer). Meanwhile, it has opened up a pathway to prepare strongly compressed two-dimensional materials by growing onto a SrTiO3 substrate, which is promising to induce superconductivity with a higher Tc.

6.
Nano Lett ; 19(5): 3327-3335, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30995413

RESUMEN

Materials can exhibit exotic properties when they approach the two-dimensional (2D) limit. Because of promising applications in catalysis and energy storage, 2D transition-metal carbides (TMCs) have attracted considerable attention in recent years. Among these TMCs, ultrathin crystalline α-Mo2C flakes have been fabricated by chemical vapor deposition on Cu/Mo bilayer foils, and their 2D superconducting property was revealed by transport measurements. Herein, we studied the ultrathin α-Mo2C flakes by atomic-resolved scanning tunneling microscopy/spectroscopy (STM/S). Strain-related structural modulation and the coexistence of different layer-stacking modes are observed on the Mo-terminated surface of α-Mo2C flakes as well as various lattice defects. Furthermore, an enhanced superconductivity with shorter correlation length was observed by STS technique, and such superconductivity is very robust despite the appearance of the defects. A mechanism of superconducting enhancement is proposed based on the strain-induced strong coupling and the increased disordering originated from lattice defects. Our results provide a comprehensive understanding of the correlations between atomic structure, defects, and enhanced superconductivity of this emerging 2D material.

7.
Nat Commun ; 4: 2214, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23896829

RESUMEN

The chemical reactivity of different surfaces of titanium dioxide (TiO2) has been the subject of extensive studies in recent decades. The anatase TiO2(001) and its (1 × 4) reconstructed surfaces were theoretically considered to be the most reactive and have been heavily pursued by synthetic chemists. However, the lack of direct experimental verification or determination of the active sites on these surfaces has caused controversy and debate. Here we report a systematic study on an anatase TiO2(001)-(1 × 4) surface by means of microscopic and spectroscopic techniques in combination with first-principles calculations. Two types of intrinsic point defects are identified, among which only the Ti(3+) defect site on the reduced surface demonstrates considerable chemical activity. The perfect surface itself can be fully oxidized, but shows no obvious activity. Our findings suggest that the reactivity of the anatase TiO2(001) surface should depend on its reduction status, similar to that of rutile TiO2 surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...