Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.488
Filtrar
1.
Chem Commun (Camb) ; 60(70): 9298-9309, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39104313

RESUMEN

The electrochemical carbon dioxide reduction reaction (eCO2RR) represents an effective means of achieving renewable energy storage and a supply of carbon-based raw materials. However, there are still great challenges in selectively producing specific hydrocarbon compounds. The unique ability of the copper (Cu) catalyst to promote proton-coupled electron transfer processes offers clear advantages in generating value-added products. This review presents molecular enhancement strategies for Cu-based catalysts for CO2 electroreduction. We also elucidate the principles of each strategy for enhancing eCO2RR performance, discuss the structure-activity relationships, and propose some promising molecular enhancement strategies. This review will provide guidance for the development of organic-inorganic hybrid Cu-based catalysts as high-performance CO2 electroreduction catalysts.

2.
Heliyon ; 10(15): e35227, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39165966

RESUMEN

Based on the China National Knowledge Infrastructure (CNKI) and Web of Science (WOS) databases, this article analyzes the deductive context, cooperation network, and research hotspots of land development rights (LDR) research in the Chinese and international literature by using CiteSpace software, and it also explores the implications of this research for the theory and practice of national territory spatial planning (NTSP) in China. The results show that (1) the literature on LDR in Chinese and international journal articles initially appeared in 1995 and 1973, respectively, researches in China experienced three stages: embryonic fluctuating development, rapid growth and stable development, and wave development, while international researches experienced two stages: embryonic fluctuating and a gradually increasing development. (2) Among these scholars and research institutions, there is no obvious difference between Chinese and international scholars, while the Renmin University of China and the State University System of Florida are the research institutions with the largest number of Chinese and international journal articles, respectively. (3) In terms of publishing journals, international journals mainly focus on land policy, cities, and resource fields, while Chinese journals mainly focus on the agricultural economy, civil and commercial law, economic systems, and macroeconomic management fields. (4) The direction and scale of thematic research vary greatly, with Chinese research mainly conducted from the perspectives of rights attribution and benefits distribution, while international research mainly focuses on the operation of the right-to-development system and its impact on the environment. In the future, studies focus on China's need to strengthen the research and institutional practice of LDR at the legal level, value level, and extension level following national conditions, formulate a land value-added benefit distribution system with efficiency and fairness, and strengthen the practice of LDR in China's NTSP based on the differences between urban and rural development.

3.
Cancer Manag Res ; 16: 1021-1030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157713

RESUMEN

Background: Extended surgery with multi-visceral resection is the standard treatment for retroperitoneal liposarcoma (RLPS). Malnutrition tends to result in increased surgical complications and reduced survival. The aim of this study was to identify the prognostic role of nutritional status in patients with RLPS. Patients and methods: Data from 189 consecutive patients with RLPS who underwent surgical treatment at the Peking University Cancer Hospital Sarcoma Center between April 2011 and August 2022 were retrospectively reviewed. The following nutritional parameters were calculated: nutritional risk index, prognostic nutritional index (PNI) and Nutrition Risk Screening 2002. Time-dependent receiver operating characteristic (time-ROC) curve analysis was conducted to compare the prognostic utility of nutritional indicators. The associations between nutritional indicators and major complications, local recurrence-free survival (LRFS) and overall survival (OS) were investigated. Results: Based on the time-ROC curve analysis, the PNI was superior to other nutritional indices at predicting OS. The optimal cut-off value of PNI was 41.2. The PNI was significantly inversely associated with tumor size, tumor grade, and histological subtype. Patients in the low PNI group (< 41.2) had significantly shorter LRFS and OS than those in the high PNI (≥ 41.2) group, with higher major morbidity and mortality rates. The PNI was found to be a unique nutritional predictor that independently predicted LRFS and OS in the multivariate analysis. Conclusion: The PNI is an effective tool for nutritional assessment in patients with RLPS. A low PNI value in patients with RLPS predicts worse survival outcomes.

4.
Water Res ; 265: 122276, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154397

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) in water requires sufficient removal due to their extreme chemical stability and potential health risk. Membrane separation can be a promising strategy, while membranes with conventional structures used for PFAS removal often face challenges such as limited efficiency and stability. In this study, a novel metal-organic framework (MOF) membrane with local modification of polyamide (PA) was developed by introducing interfacial polymerization process during the construction of lamellar membranes with MOF nanosheets. Benefiting from the dense structure and strong negative surface charge, the PA-modified MOF membrane could effectively remove 11 types of PFAS (five short-chain and six long-chain ones with molecular weights ranging from 214.0 to 514.1 Da), especially displaying high rejections for short-chain PFAS (over 84%), along with a remarkable water permeance of 21.4 L·m⁻²·h⁻¹·bar⁻1. The membrane removal characteristics for PFAS were deeply analyzed by elucidating various rejection mechanisms, with particularly distinguishing the rejection and adsorption capacity. Moreover, the membrane stability was significantly enhanced, demonstrated by the structural integrity after 10 min of ultrasonic treatment and stable separation efficiency over 120 h of continuous filtration. With enhanced surface hydrophilicity and negative charge as well as dense membrane pores, the novel membrane also exhibited more superior anti-fouling performance compared to conventional lamellar and PA membranes, further manifesting advantages for practical applications. This work provides a promising solution for developing high-performance membranes tailored specifically for efficient PFAS removal, addressing a critical need in water treatment.

5.
ChemSusChem ; : e202401338, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155270

RESUMEN

The local charge distribution of photocatalyst is crucial to the catalytic activity due to its influence on the charge separation process. Herein, we report two one-dimensional Ni-based metal-organic assemblies for efficient photocatalytic hydrogen evolution without using noble-metal cocatalysts. By adjusting the aromatic ring in the center of the tricarboxylic ligand, the photocatalytic hydrogen evolution activity was increased from 1715 to 2652 µmol h-1 g-1. The detailed mechanism study shows that the introduced nitrogen atoms in the ligands of the metal-organic coordination assembly could modulate the local charge distribution, and yielding a significant enhancement of the molecular dipole moment which engenders a propulsive force for the effective separation and transport of photoinduced charge carriers. This work provides insights into the local charge distribution via ligand modulation for enhancing the activity of photocatalysts.

6.
Chem Sci ; 15(32): 12732-12738, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39148802

RESUMEN

The Pictet-Spengler type condensation of tryptamine derivatives and aldehydes or ketones is a classic reaction, and has been previously applied to assemble indole-annulated 5-, 6- and 8-membered heterocyclic rings. In this work, we further expand the synthetic scope of this reaction to the 7-membered azepino[4,5-b]indole skeleton through the direct C-H functionalization of 2-alkyl tryptamines, in which the non-activated methylene group participates in a 7-membered ring formation with aldehydes. By combining this unprecedented ring-forming process with a second C-H olefination at the same carbon, the concise total synthesis of natural products ngouniensines is achieved, demonstrating the synthetic potential of the developed chemistry in simplifying retrosynthetic disconnections.

7.
J Colloid Interface Sci ; 677(Pt B): 303-311, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146818

RESUMEN

HYPOTHESIS: Perfluorocarbon is commonly used as a coolant, chemical reaction carrier solvent, medical anti-hypoxic agents and blood substitutes. The realization of non-contact complex manipulation of perfluorocarbon liquids is urgently needed in human life and industrial production. However, most liquid-repellent interfaces are ineffective for the transport of ultra-low surface tension perfluorocarbon liquids, and struggle to maintain good durability due to unstable air or oil cushions in the surface. Therefore, preparing surfaces for stable non-contact complex manipulation of ultra-low surface tension droplets remains a challenge. EXPERIMENTS: In this paper, a novel solution, a photothermal responsive droplet manipulation surface based on polydimethylsiloxane brushes, has been reported. On this surface, droplets with different surface tensions (as low as 10 mN/m) can be efficiently manipulated through induced near-infrared light. Notably, this surface maintains its effectiveness after exposure to extreme anthropogenic conditions. FINDINGS: The interface effect between perfluorocarbon droplets and polydimethylsiloxane brushes by near-infrared light-induced was investigated in detail. In addition, ultra-low surface tension droplets demonstrate the ability to transport solid particles. The conductive droplets exhibit sophisticated manipulation realizing the controlled switching of smart circuits. This research opens up new possibilities for advancing the capabilities and adaptability of ultralow surface tension droplets in a range of applications.

8.
PLoS One ; 19(8): e0306603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39088476

RESUMEN

Digital transformation enables small and medium enterprises (SMEs) to reduce or overcome their reliance on resources and energy, thereby minimizing their environmental impact and providing them with sustainable green competitive advantages. However, the reasons for this phenomenon are not yet clear. To further investigate this issue, we selected 391 Chinese SMEs to examine the relationships among green transformation, green innovation, government regulation, and green competitive advantages. Green innovation includes green product innovation and green process innovation, while government regulation includes incentive regulation, constraint regulation, and guidance regulation. The empirical results show that digital transformation can enhance SMEs' green competitive advantages. Additionally, the hypothesized mediating effect of green product innovation and green process innovation between digital transformation and green competitive advantages is supported, while the moderating effect of incentive regulation, constraint regulation, and guidance regulation on the relationship between digital transformation and green product innovation and green process innovation is also confirmed. The findings of this study may contribute to more effective management of digital transformation and green innovation in SMEs, thereby promoting their development.


Asunto(s)
Regulación Gubernamental , China , Conservación de los Recursos Naturales/métodos , Invenciones , Humanos
9.
Chem Sci ; 15(30): 11847-11855, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092106

RESUMEN

Cyclic peptides represent invaluable scaffolds in biological affinity, providing diverse collections for discovering functional molecules targeting challenging biological entities and protein-protein interactions. The field increasingly focuses on developing cyclization strategies and chemically modified combinatorial libraries in conjunction with M13 phage display, to identify macrocyclic peptide inhibitors for traditionally challenging targets. Here, we introduce a cyclization strategy utilizing ortho-phthalaldehyde (OPA) for the discovery of active macrocycles characterized by asymmetric scaffolds with side-chain cyclization. Through this approach, aldehyde groups attached to free molecules sequentially attack the ε-amine of lysine and the thiol of cysteine, facilitating the rapid cyclization of genetically encoded linear precursor libraries displayed on phage particles. The construction of a 109-member library and subsequent screening successfully identified cyclic peptide binders targeting three therapeutically relevant proteins: PTP1B, NEK7, and hKeap1. The results confirm the efficacy in rapidly obtaining active ligands with micromolar potency. This work provides a fast and efficient operable high-throughput platform for screening functional peptide macrocycles, which hold promise for broad application in therapeutics, chemically biological probes, and disease diagnosis.

10.
Nat Protoc ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112651

RESUMEN

Covalent organic frameworks (COFs) are crystalline porous polymers constructed from organic building blocks into ordered two- or three-dimensional networks through dynamic covalent bonds. Attributed to their high porosity, well-defined structure, tailored functionality and excellent chemical stability, COFs have been considered ideal sorbents for various separation applications. The synthesis of COFs mainly employs the solvothermal method, which usually requires organic solvents in sealed Pyrex tubes, resulting in unscalable powdery products and environmental pollution that seriously limits their practical applications. Herein, our protocol focuses on an emerging synthesis method for COFs based on organic flux synthesis without adding solvents. The generality of this synthesis protocol has been applied in preparing various types of COFs, including olefin-linked, imide-linked, Schiff-based COFs on both gram and kilogram scales. Furthermore, organic flux synthesis avoids the disadvantages of solvothermal synthesis and enhances the crystallization and porosity of COFs. Typically, COF synthesis takes 3-5 d to complete, and subsequent washing procedures leading to pure COFs need 1 d. The procedure for kilogram-scale production of COFs with commercially available monomers is also provided. The resulting COFs are suitable for separation applications, particularly as adsorbent materials for industrial gas separation and water treatment applications. The protocol is suited for users with prior expertise in the synthesis of inorganic materials and porous organic materials.

11.
Nano Lett ; 24(33): 10237-10243, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39092903

RESUMEN

The Weyl semimetals represent a distinct category of topological materials wherein the low-energy excitations appear as the long-sought Weyl Fermions. Exotic transport and optical properties are expected because of the chiral anomaly and linear energy-momentum dispersion. While three-dimensional Weyl semimetals have been successfully realized, the quest for their two-dimensional (2D) counterparts is ongoing. Here, we report the realization of 2D Weyl Fermions in monolayer PtTe1.75, which has strong spin-orbit coupling and lacks inversion symmetry, by combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy, second harmonic generation, X-ray photoelectron spectroscopy measurements, and first-principles calculations. The giant Rashba splitting and band inversion lead to the emergence of three pairs of critical Weyl cones. Moreover, monolayer PtTe1.75 exhibits excellent chemical stability in ambient conditions, which is critical for future device applications. The discovery of 2D Weyl Fermions in monolayer PtTe1.75 opens up new possibilities for designing and fabricating novel spintronic devices.

12.
Redox Biol ; 75: 103278, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128227

RESUMEN

The neuronal excitotoxicity that follows reoxygenation after a hypoxic period may contribute to epilepsy, Alzheimer's disease, Parkinson's disease and various disorders that are related to inadequate supplement of oxygen in neurons. Therefore, counteracting the deleterious effects of post-hypoxic stress is an interesting strategy to treat a large spectrum of neurodegenerative diseases. Here, we show that the expression of the key telomere protecting protein Trf2 decreases in the brain of mice submitted to a post-hypoxic stress. Moreover, downregulating the expression of Terf2 in hippocampal neural cells of unchallenged mice triggers an excitotoxicity-like phenotype including glutamate overexpression and behavioral alterations while overexpressing Terf2 in hippocampal neural cells of mice subjected to a post-hypoxic treatment prevents brain damages. Moreover, Terf2 overexpression in culture neurons counteracts the oxidative stress triggered by glutamate. Finally, we provide evidence that the effect of Terf2 downregulation on excitotoxicity involves Sirt3 repression leading to mitochondrial dysfunction. We propose that increasing the level of Terf2 expression is a potential strategy to reduce post-hypoxic stress damages.


Asunto(s)
Neuronas , Sirtuina 3 , Proteína 2 de Unión a Repeticiones Teloméricas , Animales , Ratones , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Sirtuina 3/metabolismo , Sirtuina 3/genética , Neuronas/metabolismo , Neuronas/patología , Hipocampo/metabolismo , Hipocampo/patología , Estrés Oxidativo , Mitocondrias/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Hipoxia/metabolismo , Ácido Glutámico/metabolismo , Telómero/metabolismo , Telómero/genética , Masculino
13.
Front Microbiol ; 15: 1413532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021627

RESUMEN

Introduction: Echinococcosis is a chronic zoonotic disease caused by tapeworms of the genus Echinococcus. The World Health Organization (WHO) has identified encapsulated disease as one of 17 neglected diseases to be controlled or eliminated by 2050. There is no accurate, early, non-invasive molecular diagnostic method to detect echinococcosis. The feasibility of circulating free DNA as a diagnostic method for echinococcosis has yielded inconclusive results in a number of published studies. However, there has been no systematic evaluation to date assessing the overall performance of these assays. We report here the first meta-analysis assessing the diagnostic accuracy of cfDNA in plasma, serum, and urine for echinococcosis. Methods: We systematically searched PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), and WeiPu databases up to 17 January 2024, for relevant studies. All analyses were performed using RevMan 5.3, Meta-DiSc 1.4, Stata 17.0, and R 4.3.1 software. The sensitivity, specificity, and other accuracy indicators of circulating free DNA for the diagnosis of echinococcosis were summarized. Subgroup analyses and meta-regression were performed to identify sources of heterogeneity. Results: A total of 7 studies included 218 patients with echinococcosis and 214 controls (156 healthy controls, 32 other disease controls (non-hydatid patients), and 26 non-study-targeted echinococcosis controls were included). Summary estimates of the diagnostic accuracy of cfDNA in the diagnosis of echinococcosis were as follows: sensitivity (SEN) of 0.51 (95% CI: 0.45-0.56); specificity (SPE) of 0.99 (95% CI: 0.97-0.99); positive likelihood ratio (PLR) of 11.82 (95% CI: 6.74-20.74); negative likelihood ratio (NLR) of 0.57 (95% CI: 0.41-0.80); diagnostic ratio (DOR) of 36.63 (95% CI: 13.75-97.59); and area under the curve (AUC) value of 0.98 (95% CI: 0.96-1.00). Conclusion: Existing evidence indicates that the combined specificity of circulating cfDNA for echinococcosis is high. However, the combined sensitivity performance is unsatisfactory due to significant inter-study heterogeneity. To strengthen the validity and accuracy of our findings, further large-scale prospective studies are required.Systematic review registrationThe systematic review was registered in the International Prospective Register of Systematic Reviews PROSPERO [CRD42023454158]. https://www.crd.york.ac.uk/PROSPERO/.

14.
J Biomater Sci Polym Ed ; : 1-19, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994903

RESUMEN

Cartilage tissue engineering holds great promise for efficient cartilage regeneration. However, early inflammatory reactions to seed cells and/or scaffolds impede this process. Consequently, managing inflammation is of paramount importance. Moreover, due to the body's restricted chondrogenic capacity, inducing cartilage regeneration becomes imperative. Thus, a controlled platform is essential to establish an anti-inflammatory microenvironment before initiating the cartilage regeneration process. In this study, we utilized fifth-generation polyamidoamine dendrimers (G5) as a vehicle for drugs to create composite nanoparticles known as G5-Dic/Sr. These nanoparticles were generated by surface modification with diclofenac (Dic), known for its potent anti-inflammatory effects, and encapsulating strontium (Sr), which effectively induces chondrogenesis, within the core. Our findings indicated that the G5-Dic/Sr nanoparticle exhibited selective Dic release during the initial 9 days and gradual Sr release from days 3 to 15. Subsequently, these nanoparticles were incorporated into a gelatin methacryloyl (GelMA) hydrogel, resulting in GelMA@G5-Dic/Sr. In vitro assessments demonstrated GelMA@G5-Dic/Sr's biocompatibility with bone marrow stem cells (BMSCs). The enclosed nanoparticles effectively mitigated inflammation in lipopolysaccharide-induced RAW264.7 macrophages and significantly augmented chondrogenesis in BMSCs cocultures. Implanting BMSCs-loaded GelMA@G5-Dic/Sr hydrogels in immunocompetent rabbits for 2 and 6 weeks revealed diminished inflammation and enhanced cartilage formation compared to GelMA, GelMA@G5, GelMA@G5-Dic, and GelMA@G5/Sr hydrogels. Collectively, this study introduces an innovative strategy to advance cartilage regeneration by temporally modulating inflammation and chondrogenesis in immunocompetent animals. Through the development of a platform addressing the temporal modulation of inflammation and the limited chondrogenic capacity, we offer valuable insights to the field of cartilage tissue engineering.

15.
Environ Sci Technol ; 58(28): 12633-12642, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38958591

RESUMEN

As the number of coastal nuclear facilities rapidly increases and the wastewater from the Fukushima Nuclear Plant has been discharged into the Pacific Ocean, the nuclear environmental safety of China's marginal seas is gaining increased attention along with the heightened potential risk of nuclear accidents. However, insufficient work limits our understanding of the impact of human nuclear activities on the Yellow Sea (YS) and the assessment of their environmental process. This study first reports the 129I and 127I records of posthuman nuclear activities in the two YS sediments. Source identification of anthropogenic 129I reveals that, in addition to the gaseous 129I release and re-emission of oceanic 129I discharged from the European Nuclear Fuel Reprocessing Plants (NFRPs), the Chinese nuclear weapons testing fallout along with the global fallout is an additional 129I input for the continental shelf of the YS. The 129I/127I atomic ratios in the North YS (NYS) sediment are significantly higher than those in the other adjacent coastal areas, attributed to the significant riverine input of particulate 129I by the Yellow River. Furthermore, we found a remarkable 129I latitudinal disparity in the sediments than those in the seawaters in the various China seas, revealing that sediments in China's marginal seas already received a huge anthropogenic 129I from terrigenous sources via rivers and thus became a significant sink of anthropogenic 129I. This study broadens an insight into the potential impacts of terrigenous anthropogenic pollution on the Chinese coastal marine radioactive ecosystem.


Asunto(s)
Sedimentos Geológicos , Monitoreo de Radiación , Ríos , Sedimentos Geológicos/química , Ríos/química , China , Contaminantes Radiactivos del Agua/análisis , Océanos y Mares , Humanos , Radioisótopos de Yodo/análisis
16.
J Am Chem Soc ; 146(31): 21546-21554, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39048922

RESUMEN

Two-dimensional (2D) magnets have attracted significant attention in recent years due to their importance in the research on both fundamental physics and spintronic applications. Here, we report the discovery of a new ternary compound FePd2Te2. It features a layered quasi-2D crystal structure with 1D Fe zigzag chains extending along the b-axis in the cleavage plane. Single crystals of FePd2Te2 with centimeter size could be grown. Density functional theory calculations, mechanical exfoliation, and atomic force microscopy on these crystals reveal that they are 2D materials that can be thinned down to ∼5 nm. Magnetic characterization shows that FePd2Te2 is an easy-plane ferromagnet with TC ∼ 183 K and strong in-plane uniaxial magnetic anisotropy. Magnetoresistance and the anomalous Hall effect demonstrate that ferromagnetism could be maintained in FePd2Te2 flakes with large coercivity. A crystal twinning effect is observed by scanning tunneling microscopy which makes the Fe chains right angle bent in the cleavage plane and creates an intriguing spin texture. Besides, a large electronic specific heat coefficient of up to γ ∼ 32.4 mJ mol-1 K-2 suggests FePd2Te2 is a strongly correlated metal. Our results show that FePd2Te2 is a correlated anisotropic 2D magnet that may attract multidisciplinary research interests.

17.
Chempluschem ; : e202400364, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978154

RESUMEN

Nuclear energy is a competitive and environmentally friendly low-carbon energy source. It is seen as an important avenue for satisfying energy demands, responding to the energy crisis, and mitigating global climate change. However, much attention has been paid to achieving the effective treatment of radionuclide ions produced in nuclear waste. Initially, advanced adsorbents were mainly available in powder form, which meant that additional purification processes were usually required for separation and recovery in industrial applications. Therefore, to meet the practical requirements of industrial applications, materials need to be molded and processed into forms such as beads, membranes, gels, and resins. Here, we summarize the fabrication of porous materials used for capturing typical radionuclide ions, including UO2 2+, TcO4 -, IO3 -, SeO3 2-, and SeO4 2-.

18.
Environ Sci Technol ; 58(31): 14022-14033, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39052879

RESUMEN

Interlayered thin-film nanocomposite (TFN) membranes have shown the potential to boost nanofiltration performance for water treatment applications including the removal of organic micropollutants (OMPs). However, the effects of substrates have been overlooked when exploiting and evaluating the efficacy of certain kinds of interlayers in tailoring membrane performance. Herein, a series of TFN membranes were synthesized on different porous substrates with identical interlayers of metal-organic framework nanosheets. It was revealed that the interlayer introduction could narrow but not fully eliminate the difference in the properties among the polyamide layers formed on different substrates, and the membrane performance variation was prominent in distinct aspects. For substrates with small pore sizes exerting severe water transport hindrance, the introduced interlayer mainly enhanced membrane water permeance by affording the gutter effect, while it could be more effective in reducing membrane pore size by improving the interfacial polymerization platform and avoiding PA defects when using a large-pore-size substrate. By matching the selected substrates and interlayers well, superior TFN membranes were obtained with simultaneously higher water permeance and OMP rejections compared to three commercial membranes. This study helps us to objectively understand interlayer efficacies and attain performance breakthroughs of TFN membranes for more efficient water treatment.


Asunto(s)
Filtración , Membranas Artificiales , Nylons , Contaminantes Químicos del Agua , Purificación del Agua , Nylons/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Nanocompuestos/química
19.
J Nanobiotechnology ; 22(1): 451, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080708

RESUMEN

The lack of a simple design strategy to obtain ideal conjugated polymers (CPs) with high absorbance and fluorescence (FL) in the near-infrared-II (NIR-II; 1000-1700 nm) region still hampers the success of NIR-II light-triggered phototheranostics. Herein, novel phototheranostic nanoparticles (PPN-NO NPs) were successfully prepared by coloading a cationic NIR-II CPs (PBC-co-PBF-NMe3) and a NO donor (S-nitroso-N-acetylpenicillamine, SNAP) onto a 1:1 mixture of DSPE-PEG5000 and dimyristoylphosphatidylcholine (DMPC) for NIR-II FL and NIR-II photoacoustic (PA) imaging-guided low-temperature NIR-II photothermal therapy (PTT) and gas combination therapy for cancer treatment. A precise NIR-II FL dually enhanced design tactic was proposed herein by integrating flexible nonconjugated segments (C6) into the CPs backbone and incorporating quaternary ammonium salt cationic units into the CPs side chain, which considerably increased the radiative decay pathway, resulting in desirable NIR-II FL intensity and balanced NIR-II absorption and NIR PTT properties. The phototheranostic PPN-NO NPs exhibited distinguished NIR-II FL and PA imaging performance in tumor-bearing mice models. Furthermore, the low-temperature photothermal effect of PPN-NO NPs could initiate NO release upon 980 nm laser irradiation, efficiently suppressing tumor growth owing to the combination of low-temperature NIR-II PTT and NO gas therapy in vitro and in vivo.


Asunto(s)
Cationes , Nanopartículas , Terapia Fototérmica , Polímeros , Animales , Ratones , Polímeros/química , Terapia Fototérmica/métodos , Humanos , Nanopartículas/química , Cationes/química , Rayos Infrarrojos , Ratones Endogámicos BALB C , Línea Celular Tumoral , Fluorescencia , Técnicas Fotoacústicas/métodos , Ratones Desnudos , Femenino , Nanomedicina Teranóstica/métodos
20.
Genes (Basel) ; 15(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39062727

RESUMEN

The yield of sweet potato [Ipomoea batatas (L.) Lam] can be easily threatened by drought stress. Typically, early stages like the seedling stage and tuber-root expansion stage are more vulnerable to drought stress. In this study, a highly drought-tolerant sweet potato cultivar "WanSu 63" was subjected to drought stress at both the seedling stage (15 days after transplanting, 15 DAT) and the tuber-root expansion stage (45 DAT). Twenty-four cDNA libraries were constructed from leaf segments and root tissues at 15 and 45 DAT for Next-Generation Sequencing. A total of 663, 063, and 218 clean reads were obtained and then aligned to the reference genome with a total mapped ratio greater than 82.73%. A sum of 7119, 8811, 5463, and 930 differentially expressed genes were identified from leaves in 15 days (L15), roots in 15 days (R15), leaves in 45 days (L45), and roots in 45 days (R45), respectively, in drought stress versus control. It was found that genes encoding heat shock proteins, sporamin, LEA protein dehydrin, ABA signaling pathway protein gene NCED1, as well as a group of receptor-like protein kinases genes were enriched in differentially expressed genes. ABA content was significantly higher in drought-treated tissues than in the control. The sweet potato biomass declined sharply to nearly one-quarter after drought stress. In conclusion, this study is the first to identify the differentially expressed drought-responsive genes and signaling pathways in the leaves and roots of sweet potato at the seedling and root expansion stages. The results provide potential resources for drought resistance breeding of sweet potato.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Ipomoea batatas , Estrés Fisiológico , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Ipomoea batatas/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Transducción de Señal/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Resistencia a la Sequía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA