Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 23(4): 1830-4, 2007 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-17279663

RESUMEN

Vacuum anneal induced changes in the surface layers of electrodeposited copper(I) oxide (Cu2O) were probed by time-of-flight positron annihilation induced Auger electron spectroscopy (TOF-PAES) and by electron induced Auger electron spectroscopy (EAES). Large changes in the intensity of the Cu PAES intensity resulting from isochronal in situ vacuum anneals made at increasing temperatures indicated that, before thermal treatment, the surface was completely covered by a carbonaceous overlayer and that this layer was removed, starting at a temperature between 100 and 200 degrees C, to expose an increasing amount of Cu in the top layer as the anneal temperature was increased. The thickness of this overlayer was estimated to be approximately 4 A based on analysis of the EAES data, and its variation with the thermal anneal temperature was mapped. This study demonstrated the order-of-magnitude enhancement in the sensitivity of PAES to the topmost surface layer in Cu2O relative to the EAES counterpart; factors underlying this contrast are discussed. Finally, the implications of ultrathin carbon layers on semiconductor surfaces are discussed.

2.
J Phys Chem B ; 110(50): 25347-55, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17165981

RESUMEN

The photoelectrochemical response of nanoporous films, obtained by anodization of Ti and W substrates in a variety of corrosive media and at preselected voltages in the range from 10 to 60 V, was studied. The as-deposited films were subjected to thermal anneal and characterized by scanning electron microscopy and X-ray diffraction. Along with the anodization media developed by previous authors, the effect of poly(ethylene glycol) (PEG 400) or D-mannitol as a modifier to the NH4F electrolyte and glycerol addition to the oxalic acid electrolyte was studied for TiO2 and WO3, respectively. In general, intermediate anodization voltages and film growth times yielded excellent-quality photoelectrochemical response for both TiO2 and WO3 as assessed by linear-sweep photovoltammetry and photoaction spectra. The photooxidation of water and formate species was used as reaction probes to assess the photoresponse quality of the nanoporous oxide semiconductor films. In the presence of formate as an electron donor, the incident photon to electron conversion efficiency (IPCE) ranged from approximately 130% to approximately 200% for both TiO2 and WO3 depending on the film preparation protocol. The best photoactive films were obtained from poly(ethylene glycol) (PEG 400) containing NH4F for TiO2 and from aqueous NaF for WO3.


Asunto(s)
Membranas Artificiales , Nanoestructuras/química , Óxidos/química , Titanio/química , Tungsteno/química , Compuestos de Amonio , Electroquímica , Electrólitos , Fluoruros/química , Glicerol/química , Manitol/química , Microscopía Electrónica de Rastreo , Ácido Oxálico/química , Tamaño de la Partícula , Fotoquímica , Polietilenglicoles/química , Porosidad , Compuestos de Amonio Cuaternario/química , Sensibilidad y Especificidad , Propiedades de Superficie , Difracción de Rayos X
3.
J Phys Chem B ; 109(24): 11953-60, 2005 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-16852473

RESUMEN

The photoelectrochemical behavior of TiO2 thin film electrodes, photocatalytically modified with Se islands, is described. The TiO2 thin films were electrodeposited on transparent conducting oxide glass substrates. The resultant electrode forms a n-TiO2/p-Se "photochemical diode" which, in turn, contacts an electrolyte phase. Both transient photocurrent profiles (in response to excitation light that is switched on or off) and steady-state current-potential curves in response to chopped irradiation are considered. We show that the relative dominance of the contributions from the TiO2 and Se components to the overall response of the photochemical diode/electrolyte junction crucially depends on the wavelength distribution of the excitation light source. A simple equivalent circuit representation of this junction is presented, comprised of a photodiode in parallel with two photodiodes connected in series back-to-back. Simulations of the transient and steady-state photoelectrochemical response of this system are presented, and are shown to be in good agreement with the corresponding experimental profiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...