Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 15, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650137

RESUMEN

Sharks and rays are key functional components of coral reef ecosystems, yet many populations of a few species exhibit signs of depletion and local extinctions. The question is whether these declines forewarn of a global extinction crisis. We use IUCN Red List to quantify the status, trajectory, and threats to all coral reef sharks and rays worldwide. Here, we show that nearly two-thirds (59%) of the 134 coral-reef associated shark and ray species are threatened with extinction. Alongside marine mammals, sharks and rays are among the most threatened groups found on coral reefs. Overfishing is the main cause of elevated extinction risk, compounded by climate change and habitat degradation. Risk is greatest for species that are larger-bodied (less resilient and higher trophic level), widely distributed across several national jurisdictions (subject to a patchwork of management), and in nations with greater fishing pressure and weaker governance. Population declines have occurred over more than half a century, with greatest declines prior to 2005. Immediate action through local protections, combined with broad-scale fisheries management and Marine Protected Areas, is required to avoid extinctions and the loss of critical ecosystem function condemning reefs to a loss of shark and ray biodiversity and ecosystem services, limiting livelihoods and food security.


Asunto(s)
Arrecifes de Coral , Tiburones , Animales , Ecosistema , Conservación de los Recursos Naturales , Explotaciones Pesqueras , Mamíferos
3.
Curr Biol ; 31(21): 4773-4787.e8, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34492229

RESUMEN

The scale and drivers of marine biodiversity loss are being revealed by the International Union for Conservation of Nature (IUCN) Red List assessment process. We present the first global reassessment of 1,199 species in Class Chondrichthyes-sharks, rays, and chimeras. The first global assessment (in 2014) concluded that one-quarter (24%) of species were threatened. Now, 391 (32.6%) species are threatened with extinction. When this percentage of threat is applied to Data Deficient species, more than one-third (37.5%) of chondrichthyans are estimated to be threatened, with much of this change resulting from new information. Three species are Critically Endangered (Possibly Extinct), representing possibly the first global marine fish extinctions due to overfishing. Consequently, the chondrichthyan extinction rate is potentially 25 extinctions per million species years, comparable to that of terrestrial vertebrates. Overfishing is the universal threat affecting all 391 threatened species and is the sole threat for 67.3% of species and interacts with three other threats for the remaining third: loss and degradation of habitat (31.2% of threatened species), climate change (10.2%), and pollution (6.9%). Species are disproportionately threatened in tropical and subtropical coastal waters. Science-based limits on fishing, effective marine protected areas, and approaches that reduce or eliminate fishing mortality are urgently needed to minimize mortality of threatened species and ensure sustainable catch and trade of others. Immediate action is essential to prevent further extinctions and protect the potential for food security and ecosystem functions provided by this iconic lineage of predators.


Asunto(s)
Tiburones , Animales , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción , Extinción Biológica , Explotaciones Pesqueras
4.
PLoS One ; 15(7): e0235559, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32628691

RESUMEN

Many important areas identified for conservation priorities focus on areas of high species richness, however, it is unclear whether these areas change depending on what aspect of richness is considered (e.g. evolutionary distinctiveness, endemicity, or threatened species). Furthermore, little is known of the extent of spatial congruency between biodiversity measures in the marine realm. Here, we used the distribution maps of all known marine sharks, rays, and chimaeras (class Chondrichthyes) to examine the extent of spatial congruency across the hotspots of three measures of species richness: total number of species, evolutionarily distinct species, and endemic species. We assessed the spatial congruency between hotspots considering all species, as well as on the subset of the threatened species only. We consider three definitions of hotspot (2.5%, 5%, and 10% of cells with the highest numbers of species) and three levels of spatial resolution (1°, 4°, and 8° grid cells). Overall, we found low congruency among all three measures of species richness, with the threatened species comprising a smaller subset of the overall species patterns irrespective of hotspot definition. Areas of congruency at 1° and 5% richest cells contain over half (64%) of all sharks and rays and occurred off the coasts of: (1) Northern Mexico Gulf of California, (2) USA Gulf of Mexico, (3) Ecuador, (4) Uruguay and southern Brazil, (5) South Africa, southern Mozambique, and southern Namibia, (6) Japan, Taiwan, and parts of southern China, and (7) eastern and western Australia. Coarsening resolution increases congruency two-fold for all species but remains relatively low for threatened measures, and geographic locations of congruent areas also change. Finally, for pairwise comparisons of biodiversity measures, evolutionarily distinct species richness had the highest overlap with total species richness regardless of resolution or definition of hotspot. We suggest that focusing conservation attention solely on areas of high total species richness will not necessarily contribute efforts towards species that are most at risk, nor will it protect other important dimensions of species richness.


Asunto(s)
Biodiversidad , Tiburones , Análisis Espacial , Animales , Evolución Biológica , Conservación de los Recursos Naturales , Bases de Datos Factuales , Internacionalidad
5.
PLoS One ; 11(11): e0164869, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27829042

RESUMEN

Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors-planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs-on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs.


Asunto(s)
Antozoos/fisiología , Conservación de los Recursos Naturales/economía , Arrecifes de Coral , Explotaciones Pesqueras/economía , Animales , Antozoos/clasificación , Organismos Acuáticos/clasificación , Organismos Acuáticos/fisiología , Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecología/economía , Ecología/métodos , Fiji , Peces/clasificación , Peces/fisiología , Mapeo Geográfico , Geografía , Biología Marina/economía , Micronesia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...