Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077766

RESUMEN

BACKGROUND AND AIM: This study investigated the administration of combination therapy, allogeneic natural killer (NK) cells and pembrolizumab in the treatment of advanced biliary tract cancer to determine the safety and tolerability (phase 1) and the efficacy and safety (phase 2a). METHODS: Forty patients (phase 1, n = 6; phase 2a, n = 34) were enrolled between December 2019 and June 2021. The patients received highly activated allogeneic NK cells ("SMT-NK") on weeks 1 and 2 and pembrolizumab on week 1. This 3-week schedule (one cycle) was repeated until confirmed disease progression, intolerable adverse events (AEs), patient withdrawal, or finishing the maximum treatment schedule. The tumor response was evaluated after every three cycles. RESULTS: In phase 1, four patients (66.7%) experienced seven AEs, but no severe AE was observed. In phase 2a, 126 AEs occurred in 29 patients (85.3%). Severe AEs (≥grade 3) were reported in 16 patients (47.1%). The overall response rate (ORR) was 17.4% in the full analysis set and 50.0% in the per-protocol set. CONCLUSIONS: SMT-NKs plus pembrolizumab resulted in no severe AEs directly related to the drug combination. The combination therapy also exerted antitumor activity with improved efficacy compared to the recent monotherapy with pembrolizumab in patients with advanced biliary tract cancer.

2.
Exp Mol Med ; 49(11): e401, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29170476

RESUMEN

Embryonic stem (ES) cells are pluripotent cells characterized by self-renewability and differentiation potential. Induced pluripotent stem (iPS) cells are ES cell-equivalent cells derived from somatic cells by the introduction of core reprogramming factors. ES and iPS cells are important sources for understanding basic biology and for generating therapeutic cells for clinical applications. Tribbles homolog 2 (Trib2) functions as a scaffold in signaling pathways. However, the relevance of Trib2 to the pluripotency of ES and iPS cells is unknown. In the present study, we elucidated the importance of Trib2 in maintaining pluripotency in mouse ES cells and in generating iPS cells from somatic cells through the reprogramming process. Trib2 expression decreased as ES cells differentiated, and Trib2 knockdown in ES cells changed their colony morphology while reducing the activity of alkaline phosphatase and the expression of the pluripotency marker genes Oct4, Sox2, Nanog and Klf4. Trib2 directly interacted with Oct4 and elevated Oct4 promoter activity. During the generation of iPS cells, Trib2 knockdown decreased the reprogramming efficiency of mouse embryonic fibroblasts, whereas Trib2 overexpression significantly increased their reprogramming efficiency. In summary, our results suggest that Trib2 is important for maintaining self-renewal in ES cells and for pluripotency induction during the reprogramming process.


Asunto(s)
Reprogramación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Biomarcadores , Diferenciación Celular/genética , Células Cultivadas , Técnicas de Reprogramación Celular , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor 4 Similar a Kruppel , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Stem Cells ; 32(12): 3126-36, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25185564

RESUMEN

Oct4 has been implicated in regulation of pluripotency in embryonic stem cells (ESCs) and reprogramming of somatic cells into induced pluripotent stem cells. However, the molecular mechanisms involved in Oct4-dependent regulation of pluripotency and reprogramming have not been clear. To gain insight into the mechanism of regulation of Oct4-mediated self-renewal of ESCs and reprogramming of somatic cells, we attempted to identify Oct4-binding proteins using affinity purification and mass spectrometry. We identified Reptin, a key component of ATP-dependent chromatin remodeling complexes, as an Oct4-binding protein. Depletion of endogenous Reptin using lentiviral short hairpin RNA (shRNA) led to a decrease in the number and size of alkaline phosphatase-positive colonies of mouse ESCs. In addition, shRNA-mediated silencing of Reptin resulted in decreased expression of pluripotency-specific marker genes, including Oct4, Sox2, Nanog, and SSEA-1. Results of the Oct4 reporter assay showed synergism between Oct4 and Reptin, and depletion of endogenous Reptin abolished Oct4 transcriptional activity. Results of a chromatin immunoprecipitation assay showed the overlapping interaction of Reptin and Oct4 to CR4 in the Oct4 enhancer in ESCs. Knockdown of Reptin using shRNA suppressed the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells, whereas overexpression of Reptin resulted in enhanced efficiency of induced pluripotent stem cell generation. These results strongly suggest that Reptin plays a key role in maintaining the pluripotency of ESCs and in establishing the pluripotency during reprogramming of somatic cells by regulation of Oct4-mediated gene regulation.


Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular , ADN Helicasas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Células Cultivadas , Reprogramación Celular/fisiología , Ratones
4.
PLoS One ; 8(9): e76875, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098810

RESUMEN

Reprogramming of somatic cells to pluripotent cells requires the introduction of factors driving fate switches. Viral delivery has been the most efficient method for generation of induced pluripotent stem cells. Transfection, which precedes virus production, is a commonly-used process for delivery of nucleic acids into cells. The aim of this study is to evaluate the efficiency of PLGA/ bPEI nanoparticles in transfection and virus production. Using a modified method of producing PLGA nanoparticles, PLGA/bPEI-DNA nanoparticles were examined for transfection efficiency and virus production yield in comparison with PLGA-DNA, bPEI-DNA nanoparticles or liposome-DNA complexes. After testing various ratios of PLGA, bPEI, and DNA, the ratio of 6:3:1 (PLGA:bPEI:DNA, w/w/w) was determined to be optimal, with acceptable cellular toxicity. PLGA/bPEI-DNA (6:3:1) nanoparticles showed superior transfection efficiency, especially in multiple gene transfection, and viral yield when compared with liposome-DNA complexes. The culture supernatants of HEK293FT cells transfected with PLGA/bPEI-DNA of viral constructs containing reprogramming factors (Oct4, Sox2, Klf4, or c-Myc) successfully and more efficiently generated induced pluripotent stem cell colonies from mouse embryonic fibroblasts. These results strongly suggest that PLGA/bPEI-DNA nanoparticles can provide significant advantages in studying the effect of multiple factor delivery such as in reprogramming or direct conversion of cell fate.


Asunto(s)
Desdiferenciación Celular/genética , ADN/química , Ácido Láctico/química , Nanopartículas/química , Polietileneimina/química , Ácido Poliglicólico/química , Retroviridae/genética , Transfección/métodos , Animales , Citometría de Flujo , Terapia Genética/métodos , Células HEK293 , Humanos , Inmunohistoquímica , Factor 4 Similar a Kruppel , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...