Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 20(8): e2304110, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806756

RESUMEN

Atherosclerosis (AS) is the primary reason behind cardiovascular diseases, leading to approximately one-third of global deaths. Developing a novel multi-model probe to detect AS is urgently required. Macrophages are the primary cells from which AS genesis occurs. Utilizing natural macrophage membranes coated on the surface of nanoparticles is an efficient delivery method to target plaque sites. Herein, Fe3 O4 -Cy7 nanoparticles (Fe3 O4 -Cy7 NPs), functionalized using an M2 macrophage membrane and a liposome extruder for Near-infrared fluorescence and Magnetic resonance imaging, are synthesized. These macrophage membrane-coated nanoparticles (Fe3 O4 @M2 NPs) enhance the recognition and uptake using active macrophages. Moreover, they inhibit uptake using inactive macrophages and human coronary artery endothelial cells. The macrophage membrane-coated nanoparticles (Fe3 O4 @M0 NPs, Fe3 O4 @M1 NPs, Fe3 O4 @M2 NPs) can target specific sites depending on the macrophage membrane type and are related to C-C chemofactor receptor type 2 protein content. Moreover, Fe3 O4 @M2 NPs demonstrate excellent biosafety in vivo after injection, showing a significantly higher Fe concentration in the blood than Fe3 O4 -Cy7 NPs. Therefore, Fe3 O4 @M2 NPs effectively retain the physicochemical properties of nanoparticles and depict reduced immunological response in blood circulation. These NPs mainly reveal enhanced targeting imaging capability for atherosclerotic plaque lesions.


Asunto(s)
Aterosclerosis , Nanopartículas , Humanos , Células Endoteliales , Nanopartículas/química , Imagen por Resonancia Magnética/métodos , Aterosclerosis/diagnóstico por imagen
2.
Talanta ; 265: 124772, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37327664

RESUMEN

Recently, photodynamic therapy (PDT) has been considered as a new strategy for atherosclerosis treatment. Targeted delivery of photosensitizer could significantly reduce its toxicity and enhance its phototherapeutic efficiency. CD68 is an antibody that can be conjugated to nano-drug delivery systems to actively target plaque sites, owing to its specific binding to CD68 receptors that are highly expressed on the surfaces of macrophage-derived foam cells. Liposomes are very popular nanocarriers due to their ability to encapsulate a wide range of therapeutic compounds including drugs, microRNAs and photosensitizers, and their ability to be surface-modified with targeting moieties leading to the development of nanocarriers with an improved targeted ability. Hence, we designed a Ce6-loaded liposomes using the film dispersion method, followed by the conjugation of CD68 antibody on the liposomal surface through a covalent crosslinking reaction, forming CD68-modified Ce6-loaded liposomes (CD68-Ce6-mediated liposomes). Flow cytometry results indicated that Ce6-containing liposomes were more effective in promoting intracellular uptake after laser irradiation. Furthermore, CD68-modified liposomes significantly strengthened the cellular recognization and thus internalization. Different cell lines have been incubated with the liposomes, and the results showed that CD68-Ce6-mediated liposomes had no significant cytotoxicity to coronary artery endothelial cells (HCAEC) under selected conditions. Interestingly, they promoted autophagy in foam cells through the increase in LC3-Ⅰ, LC3-Ⅱ expression and the decrease in p62 expression, and restrained the migration of mouse aortic vascular smooth muscle cells (MOVAS) in vitro. Moreover, the enhancement of atherosclerotic plaque stability and the reduction in the cholesterol content by CD68-Ce6-mediated liposomes were dependent on transient reactive oxygen species (ROS) generated under laser irradiation. In summary, we demonstrated that CD68-Ce6-mediated liposomes, as a photosensitizer nano-drug delivery system, have an inhibitory effect on MOVAS migration and a promotion of cholesterol efflux in foam cells, and thereby, represent promising nanocarriers for atherosclerosis photodynamic therapy.


Asunto(s)
Aterosclerosis , Nanopartículas , Fotoquimioterapia , Placa Aterosclerótica , Porfirinas , Ratones , Animales , Fármacos Fotosensibilizantes , Liposomas , Placa Aterosclerótica/tratamiento farmacológico , Células Endoteliales , Fotoquimioterapia/métodos , Aterosclerosis/tratamiento farmacológico , Porfirinas/farmacología , Porfirinas/química , Línea Celular Tumoral , Nanopartículas/química
3.
Biointerphases ; 17(5): 051002, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216595

RESUMEN

Many tissues have a three-dimensional (3D) anisotropic structure compatible with their physiological functions. Engineering an in vitro 3D tissue having the natural structure and functions is a hotspot in tissue engineering with application for tissue regeneration, drug screening, and disease modeling. Despite various designs that have successfully guided the cellular alignment, only a few of them could precisely control the orientation of each layer in a multilayered construct or achieve adequate cell contact between layers. This study proposed a design of a multilayered 3D cell/scaffold model, that is, the cell-loaded aligned nanofiber film/hydrogel (ANF/Gel) model. The characterizations of the 3D cell-loaded ANF/Gel model in terms of design, construction, morphology, and cell behavior were systematically studied. The ANF was produced by efficiently aligned electrospinning using a self-designed, fast-and-easy collector, which was designed based on the parallel electrodes and modified with a larger gap area up to about 100 cm2. The nanofibers generated by this simple device presented numerous features like high orientation, uniformity in fiber diameter, and thinness. The ANF/Gel-based cell/scaffold model was formed by encapsulating cell-loaded multilayered poly(lactic-co-glycolic acid)-ANFs in hydrogel. Cells within the ANF/Gel model showed high viability and displayed aligned orientation and elongation in accordance with the nanofiber orientation in each film, forming a multilayered tissue having a layer spacing of 60 µm. This study provides a multilayered 3D cell/scaffold model for the in vitro construction of anisotropic engineered tissues, exhibiting potential applications in cardiac tissue engineering.


Asunto(s)
Nanofibras , Ingeniería de Tejidos , Hidrogeles/química , Nanofibras/química , Poliésteres/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
4.
Nanoscale ; 14(24): 8709-8726, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35673987

RESUMEN

Atherosclerosis, the leading cause of death in the elderly worldwide, is typically characterized by elevated reactive oxygen species (ROS) levels and a chronic inflammatory state at the arterial plaques. Herein, pH-sensitive nanoparticles (HRRAP NPs) co-delivering all-trans retinal (ATR), an antioxidant linked to hyaluronic acid (HA) through a pH-sensitive hydrazone bond, and rapamycin (RAP), an anti-atherosclerotic drug loaded into the nanoparticle core, are developed for targeted combination therapy of atherosclerosis. In this way, HRRAP NPs might simultaneously reduce ROS levels via ATR antioxidant activity and reduce inflammation via the anti-inflammatory effect of RAP. In response to mildly acidic conditions mimicking the lesional inflammation in vitro, HRRAP NPs dissociated and both ATR and RAP were effectively released. The developed HRRAP NPs effectively inhibited pro-inflammatory macrophage proliferation, and displayed dose- and time-dependent specific internalization by different cellular models of atherosclerosis. Also, HRRAP NP combination therapy showed an efficient synergetic anti-atherosclerotic effect in vitro by effectively inhibiting the inflammatory response and oxidative stress in inflammatory cells. More importantly, HR NPs specifically accumulated in the atherosclerotic plaques of apolipoprotein E-deficient (ApoE-/-) mice, by active interaction with HA receptors overexpressed by different cells of the plaque. The treatment with HRRAP NPs remarkably inhibited the progression of atherosclerosis in ApoE-/- mice which resulted in stable plaques with considerably smaller necrotic cores, lower matrix metalloproteinase-9, and decreased proliferation of macrophages and smooth muscle cells (SMCs). Furthermore, HRRAP NPs attenuated RAP adverse effects and exhibited a good safety profile after long-term treatment in mice. Consequently, the developed pH-sensitive HRRAP NP represent a promising nanoplatform for atherosclerosis combination therapy.


Asunto(s)
Aterosclerosis , Nanopartículas , Placa Aterosclerótica , Animales , Apolipoproteínas E , Aterosclerosis/tratamiento farmacológico , Ácido Hialurónico/química , Concentración de Iones de Hidrógeno , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Placa Aterosclerótica/tratamiento farmacológico , Especies Reactivas de Oxígeno , Retinaldehído/uso terapéutico , Sirolimus/farmacología
5.
Biomed Res Int ; 2021: 5949804, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987441

RESUMEN

The clinical efficacy of Oxaliplatin (L-OHP) is potentially limited by dose-dependent neurotoxicity and high partitioning to erythrocytes in vivo. Long-circulating liposomes could improve the pharmacokinetic profile of L-OHP and thus enhance its therapeutic efficacy and reduce its toxicity. The purpose of this study was to prepare L-OHP long-circulating liposomes (L-OHP PEG lip) by reverse-phase evaporation method (REV) and investigate their pharmacokinetic behavior based on total platinum in rat plasma using atomic absorption spectrometry (AAS). A simple and a sensitive AAS method was developed and validated to determine the total platinum originated from L-OHP liposomes in plasma. Furthermore, long-circulating liposomes were fully characterized in vitro and showed great stability when stored at 4°C for one month. The results showed that the total platinum in plasma of L-OHP long-circulating liposomes displayed a biexponential pharmacokinetic profile with five folds higher bioavailability and longer distribution half-life compared to L-OHP solution. Thus, long-circulating liposomes prolonged L-OHP circulation time and may present a potential candidate for its tumor delivery. Conclusively, the developed AAS method could serve as a reference to investigate the pharmacokinetic behavior of total platinum in biological matrices for other L-OHP delivery systems.


Asunto(s)
Oxaliplatino/sangre , Oxaliplatino/farmacocinética , Animales , Rastreo Diferencial de Calorimetría , Liberación de Fármacos , Inyecciones Intravenosas , Cinética , Liposomas , Concentración Osmolar , Oxaliplatino/administración & dosificación , Tamaño de la Partícula , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Espectrofotometría Atómica , Temperatura
6.
J Mater Chem B ; 8(35): 8085, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32936205

RESUMEN

Correction for 'High-aspect-ratio water-dispersed gold nanowires incorporated within gelatin methacrylate hydrogels for constructing cardiac tissues in vitro' by Xiao-Pei Li et al., J. Mater. Chem. B, 2020, 8, 7213-7224, DOI: .

7.
Colloids Surf B Biointerfaces ; 186: 110733, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31864113

RESUMEN

A variety of three-dimensional DNA assemblies have been proposed as drug carriers owing to their good biocompatibility and easy fabrication. In this study, inspired by the structure of cockleburs, a novel aptamer-tethered DNA assembly was developed for effective targeted drug delivery. The Apt-nanocockleburs were fabricated via a facile process of DNA base pairing: four complementary DNA single strands, including one aptamer-ended strand and three sticky-end strands, were applied to pair with each other. The main body of the nanocockleburs can load doxorubicin (Dox) whilst the covered aptamer spines bind to the target MCF-7 cells. The self-assembled Apt-nanocockleburs exhibit higher cell uptake as well as increased cytotoxicity to MCF-7 cells than DNA nanocockleburs without aptamers. This study provided a DNA constructing platform to produce new drug carriers with high selectivity for cancer targeted drug delivery.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Aptámeros de Nucleótidos/química , ADN/química , Doxorrubicina/farmacología , Antibióticos Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Tamaño de la Partícula , Propiedades de Superficie , Células Tumorales Cultivadas
8.
Drug Deliv ; 23(3): 888-95, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-24901209

RESUMEN

To investigate the physicochemical properties, immunosafety and chronic toxicity of monomethoxypoly(ethylene glycol)-b-poly(lactic acid) (mPEG-PLA), a copolymer used as a carrier for paclitaxel (PTX) delivery. The H-Nuclear Magnetic Resonance (H-NMR), dynamic light scattering and fluorescence probe technique were conducted to determine the physicochemical properties of mPEG-PLA copolymer. PTX-loaded polymeric micelles were characterized regarding their particle size, entrapment efficiency (EE), drug loading (DL), in vitro drug release and hemolysis rate. The complement activation in human serum and mast cells degranulation were performed by ELISA and RBL-2H3 cell line in vitro, respectively. The chronic toxicity study was carried out on beagle dogs. The optimized PTX-loaded mPEG-PLA (40/60) micelles showed a particle size of 37 nm and EE of 98.0% with a DL of 17.0% w/w. Transmission electron microscopy (TEM) analyses showed that mPEG-PLA (40/60) micelles have spherical shape with dense core. In vitro release study showed a sustained release for 24 h, and the hemolysis study revealed that mPEG-PLA (40/60) was a safe nanocarrier for intravenous administration. mPEG-PLA (40/60) showed a lower complement activation ability compared to mPEG-PLA (50/50) and Cremophor® EL (Cr EL). Furthermore, the chronic toxicity of PTX-loaded mPEG-PLA (40/60) micelles was significantly lower than those of mPEG-PLA (50/50) and Cr EL.


Asunto(s)
Paclitaxel/administración & dosificación , Poliésteres/administración & dosificación , Poliésteres/efectos adversos , Polietilenglicoles/administración & dosificación , Polietilenglicoles/efectos adversos , Polímeros/administración & dosificación , Polímeros/efectos adversos , Animales , Línea Celular , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/efectos adversos , Perros , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/efectos adversos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/efectos de los fármacos , Espectroscopía de Resonancia Magnética/métodos , Micelas , Microscopía Electrónica de Transmisión/métodos , Paclitaxel/efectos adversos , Tamaño de la Partícula , Conejos
9.
Int J Pharm ; 466(1-2): 233-45, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24614579

RESUMEN

In order to create a pH-sensitive charge-reversal system for cell penetrating peptides (CPP) to prevent non-specific internalization of the drug; and concomitantly enhance the physical stability and tumor targetability of poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) micelles, two sets of novel PEG-PLA micelles were developed. Cell penetrating decapeptide arginine-glycine (RG)5 and a pH-sensitive masking decapeptide histidine-glutamic acid (HE)5 were conjugated at the PEG free end to produce pH sensitive with peptides outside micelles (PHPO), while the pH sensitive with peptides inside micelles (PHPI) are the micelles obtained with the two peptides conjugated to the free end of the PLA block. The polymers were successfully synthesized and characterized by (1)H NMR and GPC. The mixed micelles were prepared and characterized for their loading efficiency, particle size and zeta potential. The surface charge of PHPO was greatly affected by the pH of the solution and (RG)5:(HE)5 ratio at the surface. The pH value of the solution at which the surface charge of PHPO reversed could be manipulated by the feed ratio of (RG)5-PEG-PLA (RGO) and (HE)5-PEG-PLA (HEO), hence, HEO:RGO molar ratio of 45:55 was selected for tumor targeting. Docetaxel (DTX) was sufficiently solubilized by DTX-PHPO with a loading efficiency of 90.18 ± 1.65%. At pH 7.4, DTX loaded mPEG-PLA (DTX-PM) (41.2 ± 0.3 nm), DTX-PHPO (195.3 ± 1.9 nm) and DTX-PHPI (190.9 ± 4.5 nm) showed sustained DTX release of less than 55% within 48 h. However, at pH 6.8 DTX-PHPI released 87.29 ± 0.24%, while DTX-PHPO released 70.49 ± 0.39% of the initial DTX amount within 48 h. Moreover, the physical stability of DTX-PHPO was increased due to the electrostatic interaction of the two peptides. The cellular uptake of DTX-PHPO in SGC-7901 cells and the cell killing effect tested on MCF-7 cells were enhanced by 2 folds at pH 6.8 compared to pH 7.4. Hence, DTX-PHPO is highly pH-sensitive in mildly acidic pH and exhibited higher internalization, but DTX-PHPI exhibited accelerated release. Meanwhile, both formulations displayed low internalization and release at pH greater than 7. This pH sensitive charge reversal design can offer a promising safe carrier using both CPPs and PEG-PLA micelles.


Asunto(s)
Antineoplásicos/química , Péptidos de Penetración Celular/química , Micelas , Polietilenglicoles/química , Taxoides/química , Aminoácidos/química , Antineoplásicos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/administración & dosificación , Docetaxel , Estabilidad de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Nefelometría y Turbidimetría , Oligopéptidos/administración & dosificación , Oligopéptidos/química , Tamaño de la Partícula , Taxoides/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA