Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(12): e0276298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36477475

RESUMEN

OBJECTIVE: To evaluate efficacy of a novel adeno-associated virus (AAV) vector, AAV2/4-RS1, for retinal rescue in the retinoschisin knockout (Rs1-KO) mouse model of X-linked retinoschisis (XLRS). Brinzolamide (Azopt®), a carbonic anhydrase inhibitor, was tested for its ability to potentiate the effects of AAV2/4-RS1. METHODS: AAV2/4-RS1 with a cytomegalovirus (CMV) promoter (2x1012 viral genomes/mL) was delivered to Rs1-KO mice via intravitreal (N = 5; 1µL) or subretinal (N = 21; 2µL) injections at postnatal day 60-90. Eleven mice treated with subretinal therapy also received topical Azopt® twice a day. Serial full field electroretinography (ERG) was performed starting at day 50-60 post-injection. Mice were evaluated using a visually guided swim assay (VGSA) in light and dark conditions. The experimental groups were compared to untreated Rs1-KO (N = 11), wild-type (N = 12), and Rs1-KO mice receiving only Azopt® (N = 5). Immunofluorescence staining was performed to assess RS1 protein expression following treatment. RESULTS: The ERG b/a ratio was significantly higher in the subretinal plus Azopt® (p<0.0001), subretinal without Azopt® (p = 0.0002), and intravitreal (p = 0.01) treated eyes compared to untreated eyes. There was a highly significant subretinal treatment effect on ERG amplitudes collectively at 7-9 months post-injection (p = 0.0003). Cones showed more effect than rods. The subretinal group showed improved time to platform in the dark VGSA compared to untreated mice (p<0.0001). RS1 protein expression was detected in the outer retina in subretinal treated mice and in the inner retina in intravitreal treated mice. CONCLUSIONS: AAV2/4-RS1 shows promise for improving retinal phenotype in the Rs1-KO mouse model. Subretinal delivery was superior to intravitreal. Topical brinzolamide did not improve efficacy. AAV2/4-RS1 may be considered as a potential treatment for XLRS patients.


Asunto(s)
Retinosquisis , Ratones , Animales , Retinosquisis/genética , Retinosquisis/terapia , Ratones Noqueados , Terapia Genética
2.
Dis Model Mech ; 15(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36125046

RESUMEN

Bardet-Biedl syndrome (BBS) is a multi-organ autosomal-recessive disorder caused by mutations in at least 22 different genes. A constant feature is early-onset retinal degeneration leading to blindness. Among the most common forms is BBS type 10 (BBS10), which is caused by mutations in a gene encoding a chaperonin-like protein. To aid in developing treatments, we phenotyped a Bbs10 knockout (Bbs10-/-) mouse model. Analysis by optical coherence tomography (OCT), electroretinography (ERG) and a visually guided swim assay (VGSA) revealed a progressive degeneration (from P19 to 8 months of age) of the outer nuclear layer that is visible by OCT and histology. Cone ERG was absent from at least P30, at which time rod ERG was reduced to 74.4% of control levels; at 8 months, rod ERG was 2.3% of that of controls. VGSA demonstrated loss of functional vision at 9 months. These phenotypes progressed more rapidly than retinal degeneration in the Bbs1M390R/M390R knock-in mouse. This study defines endpoints for preclinical trials that can be utilized to detect a treatment effect in the Bbs10-/- mouse and extrapolated to human clinical trials.


Asunto(s)
Síndrome de Bardet-Biedl , Degeneración Retiniana , Animales , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , Modelos Animales de Enfermedad , Chaperoninas del Grupo II/genética , Chaperoninas del Grupo II/metabolismo , Humanos , Ratones , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/genética
3.
Mol Metab ; 53: 101308, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34303879

RESUMEN

OBJECTIVES: Endothelial cells that line the entire vascular system play a pivotal role in the control of various physiological processes, including metabolism. Additionally, endothelial dysfunction is associated with many pathological conditions, including obesity. Here, we assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins in endothelial cells. METHODS: We studied the effects of BBSome disruption in endothelial cells on vascular function, body weight, glucose homeostasis, and the liver and retina. For this, we generated mice with selective BBSome disruption in endothelial cells through Bbs1 gene deletion. RESULTS: We found that endothelial cell-specific BBSome disruption causes endothelial dysfunction, as indicated by the impaired acetylcholine-induced vasorelaxation in both the aorta and mesenteric artery. This was associated with an increase in the contractile response to thromboxane A2 receptor agonist (U46619) in the mesenteric artery. Mechanistically, we demonstrated that mice lacking the Bbs1 gene in endothelial cells show elevated vascular angiotensinogen gene expression, implicating renin-angiotensin system activation in the vascular changes evoked by endothelial BBSome deficiency. Strikingly, our data indicate that endothelial BBSome deficiency increases body weight and fat mass and causes hepatosteatosis along with alterations in hepatic expression of lipid metabolism-related genes and metabolomics profile. In addition, electroretinogram and optical coherence tomography analyses revealed functional and structural abnormalities in the retina, evoked by absence of the endothelial BBSome. CONCLUSIONS: Our findings demonstrate that the BBSome in endothelial cells is required for the regulation of vascular function, adiposity, hepatic lipid metabolism, and retinal function.


Asunto(s)
Células Endoteliales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Retina/metabolismo , Animales , Peso Corporal , Femenino , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...