Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(11): 108360, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38033629

RESUMEN

Vascular calcification is a hallmark of atherosclerotic disease and serves as a strong predictor and risk factor for cardiovascular events. Growing evidence suggests that autophagy may play a protective role in early atherosclerosis. The precise effects of autophagy on VSMC-mediated calcification remain unknown. In this study, we utilized multi-omic profiling to investigate impaired autophagy at the transcriptional level as a key driver of VSMC calcification. Our findings revealed that impaired autophagy is an essential determinant of VSMC calcification. We observed that an osteogenic environment affects the open chromatin status of VSMCs, compromising the transcriptional activation of autophagy initiation genes. In vivo experiments involve pharmacological and genetic activation of autophagy using mouse models of spontaneous large (Mgp-/-) and small (Abcc6-/-) artery calcification. Taken together, these data advance our mechanistic understanding of vascular calcification and provide important insights for a broad range of cardiovascular diseases involving VSMC phenotype switch.

2.
iScience ; 25(2): 103806, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198871

RESUMEN

Dynamic profiling of changes in gene expression in response to stressors in specific microenvironments without requiring cellular destruction remains challenging. Current methodologies that seek to interrogate gene expression at a molecular level require sampling of cellular transcriptome and therefore lysis of the cell, preventing serial analysis of cellular transcriptome. To address this area of unmet need, we have recently developed a technology allowing transcriptomic analysis over time without cellular destruction. Our method, TRACE-seq (TRanscriptomic Analysis Captured in Extracellular vesicles using sequencing), is characterized by a cell-type specific transgene expression. It provides data on the transcriptome inside extracellular vesicles that provides an accurate representation of stress-responsive cellular transcriptomic changes. Thus, the transcriptome of cells expressing TRACE can be followed over time without destroying the source cell, which is a powerful tool for many fields of fundamental and translational biology research.

3.
Elife ; 82019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31591966

RESUMEN

A fundamental goal in the biological sciences is to determine how individual cells with varied gene expression profiles and diverse functional characteristics contribute to development, physiology, and disease. Here, we report a novel strategy to assess gene expression and cell physiology in single living cells. Our approach utilizes fluorescently labeled mRNA-specific anti-sense RNA probes and dsRNA-binding protein to identify the expression of specific genes in real-time at single-cell resolution via FRET. We use this technology to identify distinct myocardial subpopulations expressing the structural proteins myosin heavy chain α and myosin light chain 2a in real-time during early differentiation of human pluripotent stem cells. We combine this live-cell gene expression analysis with detailed physiologic phenotyping to capture the functional evolution of these early myocardial subpopulations during lineage specification and diversification. This live-cell mRNA imaging approach will have wide ranging application wherever heterogeneity plays an important biological role.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Perfilación de la Expresión Génica/métodos , Microscopía Intravital/métodos , Análisis de la Célula Individual/métodos , Diferenciación Celular , Humanos , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/fisiología , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...