Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(17): 4035-4046, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38641327

RESUMEN

Networks of tryptophan (Trp)─an aromatic amino acid with strong fluorescence response─are ubiquitous in biological systems, forming diverse architectures in transmembrane proteins, cytoskeletal filaments, subneuronal elements, photoreceptor complexes, virion capsids, and other cellular structures. We analyze the cooperative effects induced by ultraviolet (UV) excitation of several biologically relevant Trp mega-networks, thus giving insights into novel mechanisms for cellular signaling and control. Our theoretical analysis in the single-excitation manifold predicts the formation of strongly superradiant states due to collective interactions among organized arrangements of up to >105 Trp UV-excited transition dipoles in microtubule architectures, which leads to an enhancement of the fluorescence quantum yield (QY) that is confirmed by our experiments. We demonstrate the observed consequences of this superradiant behavior in the fluorescence QY for hierarchically organized tubulin structures, which increases in different geometric regimes at thermal equilibrium before saturation, highlighting the effect's persistence in the presence of disorder. Our work thus showcases the many orders of magnitude across which the brightest (hundreds of femtoseconds) and darkest (tens of seconds) states can coexist in these Trp lattices.


Asunto(s)
Triptófano , Rayos Ultravioleta , Triptófano/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Microtúbulos/química , Fluorescencia , Espectrometría de Fluorescencia
2.
Nat Commun ; 14(1): 386, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36693825

RESUMEN

Ultrafast optical-domain spectroscopies allow to monitor in real time the motion of nuclei in molecules. Achieving element-selectivity had to await the advent of time resolved X-ray spectroscopy, which is now commonly carried at X-ray free electron lasers. However, detecting light element that are commonly encountered in organic molecules, remained elusive due to the need to work under vacuum. Here, we present an impulsive stimulated Raman scattering (ISRS) pump/carbon K-edge absorption probe investigation, which allowed observation of the low-frequency vibrational modes involving specific selected carbon atoms in the Ibuprofen RS dimer. Remarkably, by controlling the probe light polarization we can preferentially access the enantiomer of the dimer to which the carbon atoms belong.

3.
Phys Chem Chem Phys ; 23(44): 25308-25316, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34747432

RESUMEN

The photochemistry of metal-organic compounds in solution is determined by both intra- and inter-molecular relaxation processes after photoexcitation. Understanding its prime mechanisms is crucial to optimise the reactive paths and control their outcome. Here we investigate the photoinduced dynamics of aqueous ferrioxalate ([FeIII(C2O4)3]3-) upon 263 nm excitation using ultrafast liquid phase photoelectron spectroscopy (PES). The initial step is found to be a ligand-to-metal electron transfer, occuring on a time scale faster than our time resolution (≲30 fs). Furthermore, we observe that about 25% of the initially formed ferrous species population are lost in ∼2 ps. Cast in the contest of previous ultrafast infrared and X-ray spectroscopic studies, we suggest that upon prompt photoreduction of the metal centre, the excited molecules dissociate in <140 fs into the pair of CO2 and [(CO2)FeII(C2O4)2]3- fragments, with unity quantum yield. About 25% of these pairs geminately recombine in ∼2 ps, due to interaction with the solvent molecules, reforming the ground state of the parent ferric molecule.

5.
Nat Commun ; 12(1): 1239, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623010

RESUMEN

One of the main challenges in ultrafast material science is to trigger phase transitions with short pulses of light. Here we show how strain waves, launched by electronic and structural precursor phenomena, determine a coherent macroscopic transformation pathway for the semiconducting-to-metal transition in bistable Ti3O5 nanocrystals. Employing femtosecond powder X-ray diffraction, we measure the lattice deformation in the phase transition as a function of time. We monitor the early intra-cell distortion around the light absorbing metal dimer and the long range deformations governed by acoustic waves propagating from the laser-exposed Ti3O5 surface. We developed a simplified elastic model demonstrating that picosecond switching in nanocrystals happens concomitantly with the propagating acoustic wavefront, several decades faster than thermal processes governed by heat diffusion.

6.
Phys Rev Lett ; 125(21): 216402, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33274982

RESUMEN

Trigonal tellurium, a small-gap semiconductor with pronounced magneto-electric and magneto-optical responses, is among the simplest realizations of a chiral crystal. We have studied by spin- and angle-resolved photoelectron spectroscopy its unconventional electronic structure and unique spin texture. We identify Kramers-Weyl, composite, and accordionlike Weyl fermions, so far only predicted by theory, and show that the spin polarization is parallel to the wave vector along the lines in k space connecting high-symmetry points. Our results clarify the symmetries that enforce such spin texture in a chiral crystal, thus bringing new insight in the formation of a spin vectorial field more complex than the previously proposed hedgehog configuration. Our findings thus pave the way to a classification scheme for these exotic spin textures and their search in chiral crystals.

7.
Phys Rev Lett ; 125(7): 076401, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857568

RESUMEN

In nodal-line semimetals, linearly dispersing states form Dirac loops in the reciprocal space with a high degree of electron-hole symmetry and a reduced density of states near the Fermi level. The result is reduced electronic screening and enhanced correlations between Dirac quasiparticles. Here we investigate the electronic structure of ZrSiSe, by combining time- and angle-resolved photoelectron spectroscopy with ab initio density functional theory (DFT) complemented by an extended Hubbard model (DFT+U+V) and by time-dependent DFT+U+V. We show that electronic correlations are reduced on an ultrashort timescale by optical excitation of high-energy electrons-hole pairs, which transiently screen the Coulomb interaction. Our findings demonstrate an all-optical method for engineering the band structure of a quantum material.

8.
Phys Rev Lett ; 124(20): 206402, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32501104

RESUMEN

Lead-halide perovskite (LHP) semiconductors are emergent optoelectronic materials with outstanding transport properties which are not yet fully understood. We find signatures of large polaron formation in the electronic structure of the inorganic LHP CsPbBr_{3} by means of angle-resolved photoelectron spectroscopy. The experimental valence band dispersion shows a hole effective mass of 0.26±0.02 m_{e}, 50% heavier than the bare mass m_{0}=0.17 m_{e} predicted by density functional theory. Calculations of the electron-phonon coupling indicate that phonon dressing of the carriers mainly occurs via distortions of the Pb-Br bond with a Fröhlich coupling parameter α=1.81. A good agreement with our experimental data is obtained within the Feynman polaron model, validating a viable theoretical method to predict the carrier effective mass of LHPs ab initio.

9.
J Synchrotron Radiat ; 27(Pt 2): 425-435, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153281

RESUMEN

X-ray absorption linear dichroism of rutile TiO2 at the Ti K-edge provides information about the electronic states involved in the pre-edge transitions. Here, linear dichroism with high energy resolution is analyzed in combination with ab initio finite difference method calculations and spherical tensor analysis. It provides an assignment of the three pre-edge peaks beyond the octahedral crystal field splitting approximation and estimates the spatial extension of the corresponding final states. It is then discussed for the first time the X-ray absorption (XAS) of pentacoordinated titanium atoms due to oxygen vacancies and it is found that, similarly to anatase TiO2, rutile is expected to exhibit a transition on the low-energy side of peak A3. Its apparent absence in the experiment is related to the degree of p-d orbital mixing which is small in rutile due to its centrosymmetric point group. A recent XAS linear dichroism study on anatase TiO2 single crystals has shown that peak A2 has an intrinsic origin and is due to a quadrupolar transition to the 3d energy levels. In rutile, due to its centrosymmetric point group, the corresponding peak A2 has a small dipole moment explaining the weak transition. The results are confronted with recent picosecond X-ray absorption spectroscopy on rutile TiO2 nanoparticles.

10.
Phys Chem Chem Phys ; 22(7): 3965-3974, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32022040

RESUMEN

The photoelectron spectra of both liquid and gas phase aromatic molecules are reported. The spectra were obtained using a 34.1 eV source produced by high harmonic generation and analysed with the help of high-level ab initio simulations using the reflection principle combined with path integral molecular dynamics simulations accounting for nuclear quantum effects for the gas phase. We demonstrate the suitability of three trimethylbenzenes (1,3,5-trimethylbenzene, 1,2,3-trimethylbenzene and 1,2,4-trimethylbenzene) as a solvent for liquid photoelectron spectroscopy of solute species. We also discuss the electrokinetic charging of a non-polar liquid jet.

11.
Struct Dyn ; 6(6): 064303, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31832487

RESUMEN

Most chemical and biochemical reactions in nature and in industrial processes are driven by thermal effects that bring the reactants above the energy barrier for reaction. In aqueous solutions, this process can also be triggered by the laser driven temperature jump (T-jump) method, in which the water vibrational (stretch, bend, or combination) modes are excited by a short laser pulse, leading to a temperature increase in the irradiated volume within a few picoseconds. The combination of the laser T-jump with X-ray spectroscopic probes would add element-specificity as well as sensitivity to the structure, the oxidation state, and the spin state of the intermediates of reactions. Here, we present preliminary results of a near infrared pump/X-ray absorption spectroscopy probe to study the ligand exchange of an octahedral aqueous Cobalt complex, which is known to pass through intermediate steps yielding tetrahedral chlorinated as final species. The structural changes of the chemical reaction are monitored with great sensitivity, even in the presence of a mild local increase in temperature. This work opens perspectives for the study of non-light-driven reactions using time-resolved X-ray spectroscopic methods.

12.
Opt Lett ; 44(3): 574-577, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30702682

RESUMEN

The extension of transient grating spectroscopy to the x-ray regime will create numerous opportunities, ranging from the study of thermal transport in the ballistic regime to charge, spin, and energy transfer processes with atomic spatial and femtosecond temporal resolution. Studies involving complicated split-and-delay lines have not yet been successful in achieving this goal. Here we propose a novel, simple method based on the Talbot effect for converging beams, which can easily be implemented at current x-ray free electron lasers. We validate our proposal by analyzing printed interference patterns on polymethyl methacrylate and gold samples using ∼3 keV X-ray pulses.

13.
New Microbes New Infect ; 23: 110-114, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29692914

RESUMEN

Argasid ticks include vectors of relapsing fevers caused by Borrelia spp. in humans, and they can transmit arboviruses and other bacterial pathogens. Knowledge about soft ticks (Ixodida: Argasidae) in Algeria is incomplete, and distribution data need to be updated. Here we report a series of entomologic investigations that we conducted in five different areas in Algeria between 2012 and 2015. Ticks were identified by entomologic keys and molecular tools (16S rRNA gene). Six distinct species belonging to two genera were identified, including Ornithodoros capensis s.s., Ornithodoros rupestris, Ornithodoros occidentalis, Ornithodoros erraticus, Ornithodoros sonrai and Argas persicus. The present study highlights the distribution of soft ticks, the establishment of an update inventory with nine species and associated pathogens detected in argasid ticks in Algeria.

14.
Nat Commun ; 8(1): 13, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28408739

RESUMEN

Anatase TiO2 is among the most studied materials for light-energy conversion applications, but the nature of its fundamental charge excitations is still unknown. Yet it is crucial to establish whether light absorption creates uncorrelated electron-hole pairs or bound excitons and, in the latter case, to determine their character. Here, by combining steady-state angle-resolved photoemission spectroscopy and spectroscopic ellipsometry with state-of-the-art ab initio calculations, we demonstrate that the direct optical gap of single crystals is dominated by a strongly bound exciton rising over the continuum of indirect interband transitions. This exciton possesses an intermediate character between the Wannier-Mott and Frenkel regimes and displays a peculiar two-dimensional wavefunction in the three-dimensional lattice. The nature of the higher-energy excitations is also identified. The universal validity of our results is confirmed up to room temperature by observing the same elementary excitations in defect-rich samples (doped single crystals and nanoparticles) via ultrafast two-dimensional deep-ultraviolet spectroscopy.Here the authors combine steady-state angle-resolved photoemission spectroscopy, ellipsometry and ultrafast two-dimensional ultraviolet spectroscopy to examine the role of many-body correlations in anatase TiO2, revealing the existence of strongly bound excitons in single crystals and nanoparticles.

15.
Phys Chem Chem Phys ; 19(30): 19590-19600, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28368433

RESUMEN

On-the-fly excited state molecular dynamics is a valuable method for studying non-equilibrium processes in excited states and is beginning to emerge as a mature approach much like its ground state counterparts. In contrast to quantum wavepacket dynamics methods, it negates the need for modelling potential energy surfaces, which usually confine nuclear motion within a reduced number of vibrational modes. In addition, on-the-fly molecular dynamics techniques are easily combined with the atomistic description of the solvents (through the QM/MM approach) making it possible to explicitly address the effect of the environment. Herein, we study the nonadiabatic relaxation of photoexcited [Cu(dmp)2]+ (dmp = 2,9-dimethyl-1,10-phenanthroline) using QM/MM Trajectory Surface Hopping (TSH). We show that the decay of the initially excited singlet state into the lowest singlet (S1) state occurs within 100 fs, in agreement with previous experiments, and is slightly influenced by the solvent. Using a principal component analysis (PCA), we also identify the dominant normal modes activated during the excited state decay, which are then used to design the vibronic Hamiltonian for quantum wavepacket dynamics simulations.

16.
Struct Dyn ; 4(6): 061502, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29308414

RESUMEN

Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid-vacuum interface.

17.
Phys Rev Lett ; 117(14): 143001, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27740777

RESUMEN

The laser-assisted photoelectric effect from liquid surfaces is reported for the first time. Photoelectrons generated by 35.6 eV radiation from a liquid microjet of water under vacuum are dressed with a ℏω=1.55 eV laser field. The subsequent redistribution of the photoelectron energies consists in the appearance of sidebands shifted by energies equivalent to ℏω, 2ℏω, and 3ℏω. The response has been modeled to the third order and combined with energy-resolved measurements. This result opens the possibility to investigate the dynamics at surfaces of liquid solutions and provide information about the electron emission process from a liquid.

19.
Struct Dyn ; 3(2): 023602, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26798833

RESUMEN

A tuneable repetition rate extreme ultraviolet source (Harmonium) for time resolved photoelectron spectroscopy of liquids is presented. High harmonic generation produces 30-110 eV photons, with fluxes ranging from ∼2 × 10(11) photons/s at 36 eV to ∼2 × 10(8) photons/s at 100 eV. Four different gratings in a time-preserving grating monochromator provide either high energy resolution (0.2 eV) or high temporal resolution (40 fs) between 30 and 110 eV. Laser assisted photoemission was used to measure the temporal response of the system. Vibrational progressions in gas phase water were measured demonstrating the ∼0.2 eV energy resolution.

20.
Sci Rep ; 5: 14834, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26437873

RESUMEN

Transition metal oxides are among the most promising solar materials, whose properties rely on the generation, transport and trapping of charge carriers (electrons and holes). Identifying the latter's dynamics at room temperature requires tools that combine elemental and structural sensitivity, with the atomic scale resolution of time (femtoseconds, fs). Here, we use fs Ti K-edge X-ray absorption spectroscopy (XAS) upon 3.49 eV (355 nm) excitation of aqueous colloidal anatase titanium dioxide nanoparticles to probe the trapping dynamics of photogenerated electrons. We find that their localization at Titanium atoms occurs in <300 fs, forming Ti(3+) centres, in or near the unit cell where the electron is created. We conclude that electron localization is due to its trapping at pentacoordinated sites, mostly present in the surface shell region. The present demonstration of fs hard X-ray absorption capabilities opens the way to a detailed description of the charge carrier dynamics in transition metal oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...