Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
RNA ; 20(2): 150-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24335188

RESUMEN

In the current model of translation initiation by the scanning mechanism, eIF1 promotes an open conformation of the 40S subunit competent for rapidly loading the eIF2·GTP·Met-tRNAi ternary complex (TC) in a metastable conformation (POUT) capable of sampling triplets entering the P site while blocking accommodation of Met-tRNAi in the PIN state and preventing completion of GTP hydrolysis (Pi release) by the TC. All of these functions should be reversed by eIF1 dissociation from the preinitiation complex (PIC) on AUG recognition. We tested this model by selecting eIF1 Ssu(-) mutations that suppress the elevated UUG initiation and reduced rate of TC loading in vivo conferred by an eIF1 (Sui(-)) substitution that eliminates a direct contact of eIF1 with the 40S subunit. Importantly, several Ssu(-) substitutions increase eIF1 affinity for 40S subunits in vitro, and the strongest-binding variant (D61G), predicted to eliminate ionic repulsion with 18S rRNA, both reduces the rate of eIF1 dissociation and destabilizes the PIN state of TC binding in reconstituted PICs harboring Sui(-) variants of eIF5 or eIF2. These findings establish that eIF1 dissociation from the 40S subunit is required for the PIN mode of TC binding and AUG recognition and that increasing eIF1 affinity for the 40S subunit increases initiation accuracy in vivo. Our results further demonstrate that the GTPase-activating protein eIF5 and ß-subunit of eIF2 promote accuracy by controlling eIF1 dissociation and the stability of TC binding to the PIC, beyond their roles in regulating GTP hydrolysis by eIF2.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Codón Iniciador , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/química , Factor 5 Eucariótico de Iniciación/metabolismo , Técnicas de Inactivación de Genes , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólisis , Datos de Secuencia Molecular , Mutación Missense , Unión Proteica , Estabilidad Proteica , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Cell Biol ; 33(15): 2918-29, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23716598

RESUMEN

tRNA isopentenyltransferases (Tit1) modify tRNA position 37, adjacent to the anticodon, to N6-isopentenyladenosine (i6A37) in all cells, yet the tRNA subsets selected for modification vary among species, and their relevance to phenotypes is unknown. We examined the function of i6A37 in Schizosaccharomyces pombe tit1+ and tit1-Δ cells by using a ß-galactosidase codon-swap reporter whose catalytic activity is sensitive to accurate decoding of codon 503. i6A37 increased the activity of tRNACys at a cognate codon and that of tRNATyr at a near-cognate codon, suggesting that i6A37 promotes decoding activity generally and increases fidelity at cognate codons while decreasing fidelity at noncognate codons. S. pombe cells lacking tit1+ exhibit slow growth in glycerol or rapamycin. While existing data link wobble base U34 modifications to translation of functionally related mRNAs, whether this might extend to the anticodon-adjacent position 37 was unknown. Indeed, we found a biased presence of i6A37-cognate codons in high-abundance mRNAs for ribosome subunits and energy metabolism, congruent with the observed phenotypes and the idea that i6A37 promotes translational efficiency. Polysome profiles confirmed the decreased translational efficiency of mRNAs in tit1-Δ cells. Because subsets of i6A37-tRNAs differ among species, as do their cognate codon-sensitive mRNAs, these genomic variables may underlie associated phenotypic differences.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Isopenteniladenosina/genética , ARN de Hongos/genética , ARN Mensajero/genética , ARN de Transferencia/genética , Schizosaccharomyces/genética , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Codón/genética , Codón/metabolismo , Eliminación de Gen , Isopenteniladenosina/metabolismo , Biosíntesis de Proteínas , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo
4.
EMBO J ; 26(6): 1602-14, 2007 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-17332751

RESUMEN

Translation initiation factor eIF1A stimulates preinitiation complex (PIC) assembly and scanning, but the molecular mechanisms of its functions are not understood. We show that the F131A,F133A mutation in the C-terminal tail (CTT) of eIF1A impairs recruitment of the eIF2-GTP-Met-tRNA(i)(Met) ternary complex to 40S subunits, eliminating functional coupling with eIF1. Mutating residues 17-21 in the N-terminal tail (NTT) of eIF1A also reduces PIC assembly, but in a manner rescued by eIF1. Interestingly, the 131,133 CTT mutation enhances initiation at UUG codons (Sui(-) phenotype) and decreases leaky scanning at AUG, while the NTT mutation 17-21 suppresses the Sui(-) phenotypes of eIF5 and eIF2beta mutations and increases leaky scanning. These findings and the opposite effects of the mutations on eIF1A binding to reconstituted PICs suggest that the NTT mutations promote an open, scanning-conducive conformation of the PIC, whereas the CTT mutations 131,133 have the reverse effect. We conclude that tight binding of eIF1A to the PIC is an important determinant of AUG selection and is modulated in opposite directions by residues in the NTT and CTT of eIF1A.


Asunto(s)
Codón Iniciador/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factor 1 Eucariótico de Iniciación/genética , Mutagénesis , Mutación Missense/genética , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética
5.
Methods ; 40(3): 234-42, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16890454

RESUMEN

I present an overview of published methods for measuring mitogen activated protein (MAP) kinase activity on endogenous associated substrates, exogenously added substrates as well as determination of activation loop phosphorylation as a read-out of kinase activity in vivo. Detailed procedures for these assays are given for two MAP kinases (MAPKs) Fus3 and Kss1 and compared with other published protocols, including the protocols for Hog1 and Mpk1 MAPKs. Measuring kinase activity in immune complex assays can serve as an approach for identification of potential substrates of protein kinases as well as for detecting other kinase-associated proteins.


Asunto(s)
Inmunoensayo/métodos , Proteínas Quinasas Activadas por Mitógenos/análisis , Western Blotting/métodos , Extractos Celulares , Immunoblotting/métodos , Inmunoprecipitación/métodos , Proteínas Quinasas Activadas por Mitógenos/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/inmunología , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Curr Biol ; 13(14): 1220-6, 2003 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12867033

RESUMEN

In mammalian cells, Ras regulates multiple effectors, including activators of mitogen-activated protein kinase (MAPK) cascades, phosphatidylinositol-3-kinase, and guanine nucleotide exchange factors (GEFs) for RalGTPases. In S. cerevisiae, Ras regulates the Kss1 MAPK cascade that promotes filamentous growth and cell integrity, but its major function is to activate adenylyl cyclase and control proliferation and survival ([; see Figure S1 in the Supplemental Data available with this article online). Previous work hints that the mating Fus3/Kss1 MAPK cascade cross-regulates the Ras/cAMP pathway during growth and mating, but direct evidence is lacking. Here, we report that Kss1 and Fus3 act upstream of the Ras/cAMP pathway to regulate survival. Loss of Fus3 increases cAMP and causes poor long-term survival and resistance to stress. These effects are dependent on Kss1 and Ras2. Activation of Kss1 by a hyperactive Ste11 MAPKKK also increases cAMP, but mating receptor/scaffold activation has little effect and may therefore insulate the MAPKs from cross-regulation. Catalytically inactive Fus3 represses cAMP by blocking accumulation of active Kss1 and by another function also shared by Kss1. The conserved RasGEF Cdc25 is a likely control point, because Kss1 and Fus3 complexes associate with and phosphorylate Cdc25. Cross-regulation of Cdc25 may be a general way that MAPKs control Ras signaling networks.


Asunto(s)
AMP Cíclico/fisiología , Genes ras/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Transducción de Señal , Proteínas de Ciclo Celular/fisiología , Proteínas Fúngicas/fisiología , Quinasas Quinasa Quinasa PAM/fisiología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/fisiología , Pruebas de Precipitina , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , ras-GRF1/fisiología
7.
Genes Dev ; 17(7): 859-72, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12654728

RESUMEN

Yeast protein kinase GCN2 stimulates the translation of transcriptional activator GCN4 by phosphorylating eIF2alpha in response to amino acid starvation. Kinase activation requires binding of uncharged tRNA to a histidyl tRNA synthetase-related domain in GCN2. Phosphorylation of serine 577 (Ser 577) in GCN2 by another kinase in vivo inhibits GCN2 function in rich medium by reducing tRNA binding activity. We show that rapamycin stimulates eIF2alpha phosphorylation by GCN2, with attendant induction of GCN4 translation, while reducing Ser 577 phosphorylation in nonstarved cells. The alanine 577 (Ala 577) mutation in GCN2 (S577A) dampened the effects of rapamycin on eIF2alpha phosphorylation and GCN4 translation, suggesting that GCN2 activation by rapamycin involves Ser 577 dephosphorylation. Rapamycin regulates the phosphorylation of Ser 577 and eIF2alpha by inhibiting the TOR pathway. Rapamycin-induced dephosphorylation of Ser 577, eIF2alpha phosphorylation, and induction of GCN4 all involve TAP42, a regulator of type 2A-related protein phosphatases. Our results add a new dimension to the regulation of protein synthesis by TOR proteins and demonstrate cross-talk between two major pathways for nutrient control of gene expression in yeast.


Asunto(s)
Regulación Fúngica de la Expresión Génica/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales , Fosforilación , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/efectos de los fármacos , Sirolimus/farmacología , eIF-2 Quinasa/metabolismo
8.
J Biol Chem ; 277(34): 30675-83, 2002 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-12070158

RESUMEN

Protein kinase GCN2 regulates translation initiation by phosphorylating eukaryotic initiation factor 2alpha (eIF2alpha), impeding general protein synthesis but specifically inducing translation of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. GCN2 activity is stimulated in amino acid-deprived cells through binding of uncharged tRNA to a domain related to histidyl tRNA synthetase. We show that GCN2 is phosphorylated by another kinase on serine 577, located N-terminal to the kinase domain. Mutation of Ser-577 to alanine produced partial activation of GCN2 in nonstarved cells, increasing the level of phosphorylated eIF2alpha, derepressing GCN4 expression, and elevating the cellular levels of tryptophan and histidine. The Ala-577 mutation also increased the tRNA binding affinity of purified GCN2, which can account for the elevated kinase activity of GCN2-S577A in nonstarved cells where uncharged tRNA levels are low. Whereas Ser-577 remains phosphorylated in amino acid-starved cells, its dephosphorylation could mediate GCN2 activation in other stress or starvation conditions by lowering the threshold of uncharged tRNA required to activate the protein.


Asunto(s)
Proteínas Quinasas/química , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , eIF-2 Quinasa/metabolismo , Espectrometría de Masas , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Serina/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...