Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6882, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898615

RESUMEN

Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB, Artibeus jamaicensis) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Upon infection with SARS-CoV-2, increased viral RNA and subgenomic RNA was detected, but no infectious virus was released, indicating that JFB organoids support only limited viral replication but not viral reproduction. SARS-CoV-2 replication was associated with significantly increased gene expression of type I interferons and inflammatory cytokines. Interestingly, SARS-CoV-2 also caused enhanced formation and growth of JFB organoids. Proteomics revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells mount successful antiviral interferon responses and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.


Asunto(s)
COVID-19 , Quirópteros , Interferón Tipo I , Virus , Animales , SARS-CoV-2 , Jamaica , Antivirales , Organoides
2.
Gastro Hep Adv ; 1(5): 844-852, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35765598

RESUMEN

Background and Aims: Recent evidence suggests that the gut is an additional target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, whether SARS-CoV-2 spreads via gastrointestinal secretions remains unclear. To determine the prevalence of gastrointestinal SARS-CoV-2 infection in asymptomatic subjects, we analyzed gastrointestinal biopsy and liquid samples from endoscopy patients for the presence of SARS-CoV-2. Methods: We enrolled 100 endoscopic patients without known SARS-CoV-2 infection (cohort A) and 12 patients with a previous COVID-19 diagnosis (cohort B) in a cohort study performed at a regional hospital. Gastrointestinal biopsies and fluids were screened for SARS-CoV-2 by polymerase chain reaction (PCR), immunohistochemistry, and virus isolation assay, and the stability of SARS-CoV-2 in gastrointestinal liquids in vitro was analyzed. Results: SARS-CoV-2 ribonucleic acid was detected by PCR in the colonic tissue of 1/100 patients in cohort A. In cohort B, 3 colonic liquid samples tested positive for SARS-CoV-2 by PCR and viral nucleocapsid protein was detected in the epithelium of the respective biopsy samples. However, no infectious virions were recovered from any samples. In vitro exposure of SARS-CoV-2 to colonic liquid led to a 4-log-fold reduction of infectious SARS-CoV-2 within 1 hour (P ≤ .05). Conclusion: Overall, the persistent detection of SARS-CoV-2 in endoscopy samples after resolution of COVID-19 points to the gut as a long-term reservoir for SARS-CoV-2. Since no infectious virions were recovered and SARS-CoV-2 was rapidly inactivated in the presence of colon liquids, it is unlikely that performing endoscopic procedures is associated with a significant infection risk due to undiagnosed asymptomatic or persistent gastrointestinal SARS-CoV-2 infections.

3.
Biomed Mater ; 17(4)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609584

RESUMEN

Matrigel is a polymeric extracellular matrix material produced by mouse cancer cells. Over the past four decades, Matrigel has been shown to support a wide variety of two- and three-dimensional cell and tissue culture applications including organoids. Despite widespread use, transport of molecules, cells, and colloidal particles through Matrigel can be limited. These limitations restrict cell growth, viability, and function and limit Matrigel applications. A strategy to improve transport through a hydrogel without modifying the chemistry or composition of the gel is to physically restructure the material into microscopic microgels and then pack them together to form a porous material. These 'granular' hydrogels have been created using a variety of synthetic hydrogels, but granular hydrogels composed of Matrigel have not yet been reported. Here we present a drop-based microfluidics approach for structuring Matrigel into a three-dimensional, mesoporous material composed of packed Matrigel microgels, which we call granular Matrigel. We show that restructuring Matrigel in this manner enhances the transport of colloidal particles and human dendritic cells (DCs) through the gel while providing sufficient mechanical support for culture of human gastric organoids (HGOs) and co-culture of human DCs with HGOs.


Asunto(s)
Microgeles , Animales , Colágeno , Combinación de Medicamentos , Matriz Extracelular/química , Hidrogeles/química , Laminina , Ratones , Permeabilidad , Proteoglicanos
4.
Front Pharmacol ; 12: 707891, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552484

RESUMEN

Immunosurveillance of the gastrointestinal epithelium by mononuclear phagocytes (MNPs) is essential for maintaining gut health. However, studying the complex interplay between the human gastrointestinal epithelium and MNPs such as dendritic cells (DCs) is difficult, since traditional cell culture systems lack complexity, and animal models may not adequately represent human tissues. Microphysiological systems, or tissue chips, are an attractive alternative for these investigations, because they model functional features of specific tissues or organs using microscale culture platforms that recreate physiological tissue microenvironments. However, successful integration of multiple of tissue types on a tissue chip platform to reproduce physiological cell-cell interactions remains a challenge. We previously developed a tissue chip system, the gut organoid flow chip (GOFlowChip), for long term culture of 3-D pluripotent stem cell-derived human intestinal organoids. Here, we optimized the GOFlowChip platform to build a complex microphysiological immune-cell-epithelial cell co-culture model in order to study DC-epithelial interactions in human stomach. We first tested different tubing materials and chip configurations to optimize DC loading onto the GOFlowChip and demonstrated that DC culture on the GOFlowChip for up to 20 h did not impact DC activation status or viability. However, Transwell chemotaxis assays and live confocal imaging revealed that Matrigel, the extracellular matrix (ECM) material commonly used for organoid culture, prevented DC migration towards the organoids and the establishment of direct MNP-epithelial contacts. Therefore, we next evaluated DC chemotaxis through alternative ECM materials including Matrigel-collagen mixtures and synthetic hydrogels. A polysaccharide-based synthetic hydrogel, VitroGel®-ORGANOID-3 (V-ORG-3), enabled significantly increased DC chemotaxis through the matrix, supported organoid survival and growth, and did not significantly alter DC activation or viability. On the GOFlowChip, DCs that were flowed into the chip migrated rapidly through the V-ORG matrix and reached organoids embedded deep within the chip, with increased interactions between DCs and gastric organoids. The successful integration of DCs and V-ORG-3 embedded gastric organoids into the GOFlowChip platform now permits real-time imaging of MNP-epithelial interactions and other investigations of the complex interplay between gastrointestinal MNPs and epithelial cells in their response to pathogens, candidate drugs and mucosal vaccines.

5.
Infect Immun ; 88(4)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32094253

RESUMEN

Bacterial vaginosis (BV), a disorder of the female reproductive tract (FRT) in which a healthy Lactobacillus-dominant microflora is replaced by BV-associated bacteria (BVAB), can significantly increase the incidence of human immunodeficiency virus (HIV) acquisition. Discerning the effect of BV on the mucosal epithelium of the FRT may yield novel preventatives and therapeutics for HIV infection. Here, we investigated barrier dysfunction of the endocervix by host-derived factors, secreted in response to BV, as a potential cause of HIV infection. Using a polarized endocervical cell culture system, we determined that conditioned media (CM) from endocervical cells cocultured with BVAB (endocervical+BVAB CM), as well as cervicovaginal fluid (CVF) from women with BV, disrupted epithelial polarization. We assessed host matrix metalloproteinases (MMPs) as the BV-associated secreted factors which disrupt the endocervical epithelium. MMPs were overexpressed in endocervical+BVAB CM and CVF from women with BV and were capable of disrupting endocervical epithelial polarization. When we cocultured polarized endocervical cells with HIV-1-infected lymphocyte-derived cells, we discovered endocervical+BVAB CM and MMPs significantly increased the transmigration of virus through the epithelium, and treatment with an MMP inhibitor decreased these effects. When we examined the effect of CVF on HIV-1 transmigration through endocervical epithelium, we demonstrated that CVF samples with greater concentrations of BV-associated MMPs increased viral transmigration. Our results suggest MMPs increase HIV-1 infection by disrupting the endocervical epithelium, permitting transmigration of virus through the epithelium to infect underlying target cells.


Asunto(s)
Movimiento Celular , Endometrio/patología , Epitelio/patología , Linfocitos/fisiología , Metaloproteinasas de la Matriz/metabolismo , Permeabilidad , Vaginosis Bacteriana/patología , Células Cultivadas , Femenino , VIH-1/crecimiento & desarrollo , Humanos , Linfocitos/virología , Modelos Teóricos
6.
Viruses ; 11(5)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31052477

RESUMEN

While extensive research efforts have decreased human immunodeficiency virus (HIV) transmissions and mortalities, new challenges have arisen in the fight to eradicate HIV. Drug resistance to antiretroviral therapy threatens infected individuals, while the prevalence of heterosexual transmission creates an urgent need for therapies effective in the female reproductive tract (FRT) mucosa. We screened a library of 2095 small molecule compounds comprising a unique chemical space, purchased from Asinex Corporation, for antiviral activity against human immunodeficiency virus type 1 (HIV-1) strain BaL and identified several molecular representatives of a unique class of HIV-1 inhibitors, which we termed "Avirulins." We determined that Avirulins were active against clinical isolates of HIV-1 from genetically variant subtypes, several of which have reduced sensitivity to other antivirals. Avirulins displayed specific dose-dependent inhibition of the HIV-1 drug target, reverse transcriptase (RT). Avirulins were effective against several nucleoside RT-inhibitor resistant strains of HIV-1, as well as one nonnucleoside RT-inhibitor resistant strain containing a 106A mutation, suggesting a noncompetitive mechanism of action. Drugs, which are damaging to the FRT, can increase the risk of HIV-1 transmission. We therefore explored the cytotoxicity of Avirulins against epithelial cells derived from the FRT and found no significant toxicity, even at the highest concentrations tested. Importantly, Avirulin antiviral activity was not diminished in human cervico-vaginal fluid, suggesting retained potency in the milieu of the FRT. Based on these promising results, Avirulins should be valuable chemical scaffolds for development into next-generation treatments and preventatives that target HIV-1.


Asunto(s)
Genitales Femeninos , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Membrana Mucosa/virología , Inhibidores de la Transcriptasa Inversa/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Femenino , Genotipo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/transmisión , VIH-1/genética , Humanos , Mutación , Inhibidores de la Transcriptasa Inversa/uso terapéutico
7.
J Biol Chem ; 293(5): 1590-1595, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29242190

RESUMEN

The Rv2633c gene in Mycobacterium tuberculosis is rapidly up-regulated after macrophage infection, suggesting that Rv2633c is involved in M. tuberculosis pathogenesis. However, the activity and role of the Rv2633c protein in host colonization is unknown. Here, we analyzed the Rv2633c protein sequence, which revealed the presence of an HHE cation-binding domain common in hemerythrin-like proteins. Phylogenetic analysis indicated that Rv2633c is a member of a distinct subset of hemerythrin-like proteins exclusive to mycobacteria. The Rv2633c sequence was significantly similar to protein sequences from other pathogenic strains within that subset, suggesting that these proteins are involved in mycobacteria virulence. We expressed and purified the Rv2633c protein in Escherichia coli and found that it contains two iron atoms, but does not behave like a hemerythrin. It migrated as a dimeric protein during size-exclusion chromatography. It was not possible to reduce the protein or observe any evidence for its interaction with O2 However, Rv2633c did exhibit catalase activity with a kcat of 1475 s-1 and Km of 10.1 ± 1.7 mm Cyanide and azide inhibited the catalase activity with Ki values of 3.8 µm and 37.7 µm, respectively. Rv2633c's activity was consistent with a role in defenses against oxidative stress generated during host immune responses after M. tuberculosis infection of macrophages. We note that Rv2633c is the first example of a non-heme di-iron catalase, and conclude that it is a member of a subset of hemerythrin-like proteins exclusive to mycobacteria, with likely roles in protection against host defenses.


Asunto(s)
Proteínas Bacterianas/química , Catalasa/química , Hierro/química , Metaloproteínas/química , Mycobacterium tuberculosis/enzimología , Factores de Virulencia/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catalasa/genética , Catalasa/metabolismo , Hierro/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Estrés Oxidativo , Multimerización de Proteína , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...