Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proteins ; 91(7): 890-903, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36732896

RESUMEN

Specific proteins found in food sources tend to aggregate into fibrils under heat treatment; studying these aggregation processes and developing tools to control protein heat-induced aggregation is an active area of research. Phthalocyanine complexes are known to exhibit antiprionic and anti-fibrillogenic activity. Thus, the anti-fibrillogenic effect of a series of Zr phthalocyanines with different out-of-plane coordinated ligands, namely positively charged (PcZrLys2 ), negatively charged (PcZrCitr2 ), and group able to form disulfide bridges (PcZrS2 ), on the heat-induced aggregation of such proteins as BLG, insulin, and lysozyme was studied. The inhibition of reaction activity up to about 90% was observed in the presence of these compounds for all proteins. The effective concentration of the inhibitor was calculated for the compound with the highest activity (PcZrS2 ) to be 10.6 ± 3.6 and 7.3 ± 1.2 µM/L, respectively. Fluorescence spectroscopy studies demonstrated similar binding constants of three phthalocyanines binding with BLG globule. This is consistent with the results of molecular dynamics simulation, which imply the interaction of the globule with the tetrapyrrole macrocycle of phthalocyanine, leading to the globule stabilization. At the same time, TEM shows that in the presence of phthalocyanine PcZrS2 , thinner and longer fibrils were formed compared to control in all three proteins (BLG, insulin, and lysozyme). Thus, we can conclude that phthalocyanine PcZrS2 affects the amyloid aggregation's general mechanism, which is typical for proteins of different structures. Therefore, the phthalocyanine PcZrS2 is proposed as an anti-amyloidogenic agent suppressing heat-induced aggregation of proteins of different structures, making it potentially suitable for application in the food industry.


Asunto(s)
Agregado de Proteínas , Calor , Circonio/química , Circonio/farmacología , Insulina/metabolismo , Muramidasa/metabolismo
2.
ACS Omega ; 7(51): 47734-47746, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36591208

RESUMEN

We propose symmetrical cationic trimethine cyanine dyes with ß-substituents in the polymethine chain based on modified benzothiazole and benzoxazole heterocycles as probes for the detection and visualization of live and fixed cells by fluorescence microscopy. The spectral-luminescent properties of trimethine cyanines have been characterized for free dyes and in the presence of nucleic acids (NA) and globular proteins. The studied cyanines are low to moderate fluorescent when free, but in the presence of NA, they show an increase in emission intensity up to 111 times; the most pronounced emission increase was observed for the dyes T-2 in the presence of dsDNA and T-1 with RNA. Spectral methods showed the binding of all dyes to nucleic acids, and different interaction mechanisms have been proposed. The ability to visualize cell components of the studied dyes has been evaluated using different human cell lines (MCF-7, A2780, HeLa, and Hs27). We have shown that all dyes are cell-permeant staining nucleus components, probably RNA-rich nucleoli with background fluorescence in the cytoplasm, except for the dye T-5. The dye T-5 selectively stains some structures in the cytoplasm of MCF-7 and A2780 cells associated with mitochondria or lysosomes. This effect has also been confirmed for the normal type of cell line-human foreskin fibroblasts (Hs27). The costaining of dye T-5 with MitoTracker CMXRos Red demonstrates specificity to mitochondria at a concentration of 0.1 µM. Colocalization analysis has shown signals overlapping of dye T-5 and MitoTracker CMXRos Red (Pearson's Coefficient value = 0.92 ± 0.04). The photostability study shows benzoxazole dyes to be up to ∼7 times more photostable than benzothiazole ones. Moreover, studied benzoxazoles are less cytotoxic at working concentrations than benzothiazoles (67% of cell viability for T-4, T-5 compared to 12% for T-1, and ∼30% for T-2, T-3 after 24 h). Therefore, the benzoxazole T-4 dye is proposed for nucleic acid detection in vitro and intracellular fluorescence imaging of live and fixed cells. In contrast, the benzoxazole dye T-5 is proposed as a good alternative to commercial dyes for mitochondria staining in the green-yellow region of the spectrum.

3.
Methods Appl Fluoresc ; 9(4)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34198271

RESUMEN

We have studied spectral-luminescent properties of the monomethine cyanine dyes both in their free states and in the presence of either double-stranded deoxyribonucleic acids (dsDNAs) or single-stranded ribonucleic acids (RNAs). The dyes possess low fluorescence intensity in an unbound state, which is increased up to 479 times in the presence of the nucleic acids. In the presence of RNAs, the fluorescence intensity increase was stronger than that observed in the presence of dsDNA. Next, we have performed staining of live and fixed cells by all prepared dyes. The dyes proved to be cell and nuclear membrane permeant. They are photostable and brightly stain RNA-containing organelles in both live and fixed cells. The colocalization confirmed the specific nucleoli staining with anti-Ki-67 antibodies. The RNA digestion experiment has confirmed the selectivity of the dyes toward intracellular RNA. Based on the obtained results, we can conclude that the investigated monomethine cyanine dyes are useful fluorescent probes for the visualization of intracellular RNA and RNA-containing organelles such as nucleoli by using fluorescence microscopy.


Asunto(s)
Ácidos Nucleicos , ARN , Carbocianinas , Colorantes Fluorescentes , Microscopía Fluorescente
4.
PLoS One ; 16(1): e0243904, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33411832

RESUMEN

Amyloid fibrils are widely studied both as target in conformational disorders and as basis for the development of protein-based functional materials. The three Zr phthalocyanines bearing dehydroacetic acid residue (PcZr(L1)2) and its condensed derivatives (PcZr(L2)2 and PcZr(L3)2) as out-of-plane ligands were synthesized and their influence on insulin fibril formation was studied by amyloid-sensitive fluorescent dye based assay, scanning electron microscopy, fluorescent and absorption spectroscopies. The presence of Zr phthalocyanines was shown to modify the fibril formation. The morphology of fibrils formed in the presence of the Zr phthalocyanines differs from that of free insulin and depends on the structure of out-of-plane ligands. It is shown that free insulin mostly forms fibril clusters with the length of about 0.3-2.1 µm. The presence of Zr phthalocyanines leads to the formation of individual 0.4-2.8 µm-long fibrils with a reduced tendency to lateral aggregation and cluster formation (PcZr(L1)2), shorter 0.2-1.5 µm-long fibrils with the tendency to lateral aggregation without clusters (PcZr(L2)2), and fibril-like 0.2-1.0 µm-long structures (PcZr(L3)2). The strongest influence on fibrils morphology made by PcZr(L3)2 could be explained by the additional stacking of phenyl moiety of the ligand with aromatic amino acids in protein. The evidences of binding of studied Zr phthalocyanines to mature fibrils were shown by absorption spectroscopy (for PcZr(L1)2 and PcZr(L2)2) and fluorescent spectroscopy (for PcZr(L3)2). These complexes could be potentially used as external tools allowing the development of functional materials on protein fibrils basis.


Asunto(s)
Amiloide/química , Indoles/química , Insulina/química , Compuestos Organometálicos/química , Pironas/química , Circonio/química , Humanos , Isoindoles , Estructura Molecular
5.
RSC Adv ; 11(14): 8163-8177, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35423299

RESUMEN

A fluorescein-tagged iron(ii) cage complex was obtained in a moderate total yield using a two-step synthetic procedure starting from its propargylamine-containing clathrochelate precursor. An 11-fold decrease in fluorescence quantum yield is observed in passing from the given fluorescein-based dye to its clathrochelate derivative. An excitation energy transfer from the terminal fluorescent group of the macrobicyclic molecule to its quasiaromatic highly π-conjugated clathrochelate framework can explain this effect. The kinetics of the hydrolysis of the acetyl groups of acetylated fluorescein azide and its clathrochelate derivative in the presence of one equivalent of BSA evidenced no strong supramolecular host-guest interactions between BSA and the tested compounds. Study of a chemical stability of the deacetylated iron(ii) clathrochelate suggested the formation of a supramolecular 1 : 1 BSA-clathrochelate assembly. Moreover, an addition of BSA or HSA to its solution caused the appearance of strong clathrochelate-based ICD outputs. The fluorescence emission anisotropy studies also evidenced the supramolecular binding of the fluorescein-tagged iron(ii) clathrochelate to the BSA macromolecule, leading to a high increase in this type of anisotropy. Subcellular uptake of the fluorescein-tagged molecules was visualized using fluorescence microscopy and showed its distribution to be mainly in the cytosol without entering the nucleus or accumulating in any other organelle. An X-rayed crystal of the above propargylamide macrobicyclic precursor with a reactive terminal C[triple bond, length as m-dash]C bond contains the clathrochelate molecules of two types, A and B. The encapsulated iron(ii) ion in these molecules is situated in the center of its FeN6-coordination polyhedron, the geometry of which is intermediate between a trigonal prism (TP) and a trigonal antiprism (TAP). The Fe-N distances vary from 1.8754(6) to 1.9286(4) Å and the heights h of their distorted TP-TAP polyhedra are very similar (2.30 and 2.31 Å); their values of φ are equal to 25.3 and 26.6°. In this crystal, the molecules of types A and B participate in different types of hydrogen bonding, giving H-bonded clathrochelate tetramers through their carboxylic and amide groups, respectively; these tetramers are connected to H-bonded chains.

6.
Methods Appl Fluoresc ; 8(3): 035006, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32375137

RESUMEN

Green-emitting water-soluble amino-ketoenole dye AmyGreen is proposed as an efficient fluorescent stain for visualization of bacterial amyloids in biofilms and the detection of pathological amyloids in vitro. This dye is almost non-fluorescent in solution, displays strong green emission in the presence of amyloid fibril of proteins. AmyGreen is also weakly fluorescent in presence to biomolecules that are components of cells, extracellular matrix or medium: nucleic acids, polysaccharides, lipids, and proteins. Thus, the luminescence turn-on behavior of AmyGreen can be utilized for visualization of amyloid components of bacterial biofilm extracellular matrix. Herein we report the application of AmyGreen for fluorescent staining of a number of amyloid-contained bacteria biofilms produced by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bordetella avium, and Staphylococcus aureus. The effectiveness of AmyGreen was compared to traditional amyloid sensitive dye Thioflavine T. The main advantage of AmyGreen (concentration 10-5 M) is a higher sensitivity in the visualization of amyloid biofilm components over Thioflavine T (10-4 M) as it was revealed when staining E. coli and K. pneumoniae bacterial biofilms. Besides, AmyGreen displays lower cross-selectivity to nucleic acids as demonstrated both in in-solution experiments and upon staining of eukaryotic human mesenchymal stem cells used as amyloid-free negative control over amyloid-rich bacterial biofilms. The results point to a lower risk of false-positive response upon determination of amyloid components of bacterial biofilm using AmyGreen. Co-staining of biofilm by AmyGreen and cellulose sensitive dye Calcofluor White show difference in their staining patterns and localization, indicating separation of polysaccharide-rich and amyloid-rich regions of investigated biofilms. Thus, we suggest the new AmyGreen stain for visualization and differentiation of amyloid fibrils in bacterial biofilms to be used solely and in combination with other stains for confocal and fluorescence microscopy analysis.


Asunto(s)
Amiloide/química , Bacterias/patogenicidad , Colorantes Fluorescentes/uso terapéutico , Biopelículas , Humanos
7.
J Mol Recognit ; 33(1): e2811, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31497916

RESUMEN

Amyloid fibrils are rigid ß-pleated protein aggregates that are connected with series of harmful diseases and at the same time are promising as base for novel nanomaterials. Thus, design of compounds able to inhibit or redirect those aggregates formation is important both for the biomedical aims and for nanotechnology applications. Here, we studied the effect of tetraphenylporphyrins (metal free, their Cu and Pd complexes, and those functionalized by carboxy and amino groups on periphery) on insulin amyloid self-assembling. The strongest impact on insulin aggregation was demonstrated by a metal-free porphyrin bearing four carboxy groups. This compound strongly suppresses insulin aggregation (about 88% reduction in amyloid-sensitive probe emission) inducing formation of fibrils with the length close to this of free insulin (1.7 ± 0.6 µm as compared with 1.4 ± 0.4 µm, respectively) with an essentially reduced tendency to lateral aggregation. Contrarily, the presence of tetraphenylporphyrin containing four amino groups only slightly affects fibrils' morphology and makes weaker impact on insulin aggregation yield (about 44% reduction). This is explained by the ability of aromatic carboxy groups of 5,10,15,20-(tetra-4-carboxyphenyl)porphyrin to interact with complementary protein-binding groups and thus stabilize the supramolecular complex. For 5,10,15,20-(tetra-4-aminophenyl)porphyrin, full protonation takes place in acidic medium of protein aggregation reaction; this results in the high positive charge of TPPN4 (equal or close to +6) and hence higher contribution of coulombic repulsion to interaction of TPPN4 with insulin. One more possible mechanism of the lower inhibition effect of TPPN4 as compared with TPPC4 could be the more restricted possibility of the former as compared with the latter to form H bonds with insulin groups. It was also shown that metal-free, Pd-containing, and Cu-containing tetraphenylporphyrins without peripheral substituents make almost the same impact on the protein self-assembling. We suppose this to be due to coordination saturation of these metal atoms.


Asunto(s)
Amiloide/metabolismo , Insulina/metabolismo , Porfirinas/metabolismo , Agregado de Proteínas/fisiología , Humanos , Unión Proteica/fisiología
8.
J Mol Recognit ; 30(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28295701

RESUMEN

Amyloid fibrils are insoluble protein aggregates whose accumulation in cells and tissues is connected with a range of pathological diseases. We studied the impact of 2 metal complexes (axially coordinated Hf phthalocyanine and iron (II) clathrochelate) on aggregation of insulin and lysozyme. For both proteins, the host-guest interaction with these compounds changes the kinetics of fibrillization and affects the morphology of final aggregates. The Hf phthalocyanine is a very efficient inhibitor of insulin fibrillization; in its presence, only very low amounts of fibrils with the diameters of 0.8 to 5 nm and spherical aggregates were found. Effective concentration of fibrillization inhibition (IC50 ) was estimated to be 0.11 ± 0.04 µM. The clathrochelate induced the formation of thin fibrils with the diameters of 0.8 to 2.5 nm; IC50 was estimated as 20 ± 9 µM. The lysozyme fibrillization remained quite intensive in the presence of the studied compounds; they induced the formation of long filaments (the length up to 2.5 µm, the diameters of 1.5-3.5 nm). These fibrils noticeably differed from those of free lysozyme short linear species (the diameters of 3-5 nm, the length up to 0.6 µm). Thinning and elongation of fibrils suggest that the metal complexes bind mainly to the grooves of protofilaments; this hinders the stacking of early aggregates or protofilaments together but does not hinder their growth. The image of the fibril separated into 2 protofilaments allows suggesting that the fibril formation occurs via the growth of the parallel protofilaments with their subsequent twisting in the fibril. The changes of the lysozyme intrinsic fluorescence indicate that both metal complexes interact with the protein during the stage of the fibrillar seeds formation.


Asunto(s)
Amiloide/antagonistas & inhibidores , Complejos de Coordinación/química , Insulina/química , Compuestos Macrocíclicos/química , Muramidasa/química , Amiloide/química , Amiloide/ultraestructura , Animales , Pollos , Complejos de Coordinación/síntesis química , Hafnio/química , Humanos , Indoles/química , Hierro/química , Isoindoles , Cinética , Compuestos Macrocíclicos/síntesis química , Agregado de Proteínas , Unión Proteica , Soluciones
9.
Anal Biochem ; 484: 9-17, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25963892

RESUMEN

The effect of various N,N'-substituents in the molecule of benzothiazole trimethine cyanine dye on its ability to sense the amyloid aggregates of protein was studied. The dyes are low fluorescent when free and in the presence of monomeric proteins, but their emission intensity sharply increases in complexes with aggregated insulin and lysozyme, with the fluorescence quantum yield reaching up to 0.42. The dyes carrying butyl, hydroxyalkyl, and phenylalkyl groups as N,N'-substituents possess the increased fluorescent sensitivity to fibrillar lysozyme, whereas the ones carrying quaternary amino groups are preferably sensitive to fibrillar insulin. This fluorescent sensitivity preference provided by the N,N'-functional groups could be explained by the interaction between these groups and protein side chains. The strongest fluorescent response (up to 70times) and the same sensitivity to aggregates of both proteins were exhibited by the dye D-51 carrying N-sulfoalkyl group. The studied cyanines allow the detection of fibrillar aggregates in the wide range up to 0.8 to 300µg/ml and permit monitoring the protein aggregation kinetics with high reproducibility. The modification of trimethine cyanine dyes by functional substituents in N,N'-positions is suggested as a tool for the design of fluorescent molecules with the enhanced fluorescent sensitivity to the fibrillar aggregates of proteins.


Asunto(s)
Amiloide/química , Carbocianinas/química , Colorantes Fluorescentes/química , Multimerización de Proteína , Amiloide/análisis , Tampones (Química) , Humanos , Concentración de Iones de Hidrógeno , Insulina/análisis , Insulina/química , Cinética , Límite de Detección , Muramidasa/análisis , Muramidasa/química , Agregado de Proteínas , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...