Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(4)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37189753

RESUMEN

A study of the morphofunctional condition of mice with transplantable melanoma B16 under the influence of a normal daylight regime, constant lighting and constant darkness was conducted. It was shown that exposure to constant lighting leads to intensification of the proliferation of melanoma cells, more significant growth and spread of the tumor, the development of more pronounced secondary changes, the presence of perivascular growth and an increase in perineural invasion. At the same time, keeping of animals in constant darkness significantly reduced the intensity of the proliferative process in the tumor and lead to tumor regression in the absence of signs of lympho-, intravascular and intraneural invasion. Intergroup differences in tumor cell status were confirmed by the results of micromorphometric studies. It was also shown that the expression of clock genes was suppressed by an exposure to constant light, while an influence of constant darkness, on contrary, led to its intensification.

2.
Ultrasound Med Biol ; 49(1): 62-71, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36207225

RESUMEN

Boiling histotripsy (BH) is a focused ultrasound technology that uses millisecond-long pulses with shock fronts to induce mechanical tissue ablation. The pulsing scheme and mechanisms of BH differ from those of cavitation cloud histotripsy, which was previously developed for benign prostatic hyperplasia. The goal of the work described here was to evaluate the feasibility of using BH to ablate fresh ex vivo human prostate tissue as a proof of principle for developing BH for prostate applications. Fresh human prostate samples (N = 24) were obtained via rapid autopsy (<24 h after death, institutional review board exempt). Samples were analyzed using shear wave elastography to ensure that mechanical properties of autopsy tissue were clinically representative. Samples were exposed to BH using 10- or 1-ms pulses with 1% duty cycle under real-time B-mode and Doppler imaging. Volumetric lesions were created by sonicating 1-4 rectangular planes spaced 1 mm apart, containing a grid of foci spaced 1-2 mm apart. Tissue then was evaluated grossly and histologically, and the lesion content was analyzed using transmission electron microscopy and scanning electron microscopy. Observed shear wave elastography characterization of ex vivo prostate tissue (37.9 ± 22.2 kPa) was within the typical range observed clinically. During BH, hyperechoic regions were visualized at the focus on B-mode, and BH-induced bubbles were also detected using power Doppler. As treatment progressed, hypoechoic regions of tissue appeared, suggesting successful tissue fractionation. BH treatment was twofold faster using shorter pulses (1 ms vs. 10 ms). Histological analysis revealed lesions containing completely homogenized cell debris, consistent with histotripsy-induced mechanical ablation. It was therefore determined that BH is feasible in fresh ex vivo human prostate tissue producing desired mechanical ablation. The study supports further work aimed at translating BH technology as a clinical option for prostate ablation.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Masculino , Humanos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Próstata/diagnóstico por imagen , Próstata/cirugía
3.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35806411

RESUMEN

Extracellular vesicles (EV) derived from stem cells have become an effective complement to the use in cell therapy of stem cells themselves, which has led to an explosion of research into the mechanisms of vesicle formation and their action. There is evidence demonstrating the presence of mitochondrial components in EV, but a definitive conclusion about whether EV contains fully functional mitochondria has not yet been made. In this study, two EV fractions derived from mesenchymal stromal stem cells (MSC) and separated by their size were examined. Flow cytometry revealed the presence of mitochondrial lipid components capable of interacting with mitochondrial dyes MitoTracker Green and 10-nonylacridine orange; however, the EV response to the probe for mitochondrial membrane potential was negative. Detailed analysis revealed components from all mitochondria compartments, including house-keeping mitochondria proteins and DNA as well as energy-related proteins such as membrane-localized proteins of complexes I, IV, and V, and soluble proteins from the Krebs cycle. When assessing the functional activity of mitochondria, high variability in oxygen consumption was noted, which was only partially attributed to mitochondrial respiratory activity. Our findings demonstrate that the EV contain all parts of mitochondria; however, their independent functionality inside EV has not been confirmed, which may be due either to the absence of necessary cofactors and/or the EV formation process and, probably the methodology of obtaining EV.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Vesículas Extracelulares/metabolismo , Citometría de Flujo , Células Madre Mesenquimatosas/metabolismo , Mitocondrias
4.
Cells ; 10(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063923

RESUMEN

The use of stem cells is part of a strategy for the treatment of a large number of diseases. However, the source of the original stem cells for use is extremely important and determines their therapeutic potential. Mesenchymal stromal cells (MSC) have proven their therapeutic effectiveness when used in a number of pathological models. However, it remains an open question whether the chronological age of the donor organism affects the effectiveness of the use of MSC. The asymmetric division of stem cells, the result of which is some residential stem cells acquiring a non-senile phenotype, means that stem cells possess an intrinsic ability to preserve juvenile characteristics, implying an absence or at least remarkable retardation of senescence in stem cells. To test whether residential MSC senesce, we evaluated the physiological changes in the MSC from old rats, with a further comparison of the neuroprotective properties of MSC from young and old animals in a model of traumatic brain injury. We found that, while the effect of administration of MSC on lesion volume was minimal, functional recovery was remarkable, with the highest effect assigned to fetal cells; the lowest effect was recorded for cells isolated from adult rats and postnatal cells, having intermediate potency. MSC from the young rats were characterized by a faster growth than adult MSC, correlating with levels of proliferating cell nuclear antigen (PCNA). However, there were no differences in respiratory activity of MSC from young and old rats, but young cells showed much higher glucose utilization than old ones. Autophagy flux was almost the same in both types of cells, but there were remarkable ultrastructural differences in old and young cells.


Asunto(s)
Factores de Edad , Células de la Médula Ósea/citología , Células Madre Mesenquimatosas/citología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Senescencia Celular , Masculino , Ratas , Ratas Wistar
5.
Biochim Biophys Acta Biomembr ; 1863(1): 183481, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002451

RESUMEN

Phospholipase A2 (PLA2) exerts a wide range of biological effects and attracts a lot of attention of researchers. Two sites are involved in manifestation of PLA2 enzymatic activity: catalytic site responsible for substrate binding and fatty acid cleavage from the sn-2 position of a glycerophospholipid, and interface binding site (IBS) responsible for the protein binding to lipid membrane. IBS is formed by positively charged and hydrophobic amino acids on the outer surface of the protein molecule. Understanding the mechanism of PLA2 interaction with the lipid membrane is the most challenging step in biochemistry of this enzyme. We used a combination of experimental and computer simulation techniques to clarify molecular details of bee venom PLA2 interaction with lipid bilayers formed by palmitoyloleoylphosphatidylcholine or dipalmitoylphosphatidylcholine. We found that after initial enzyme contact with the membrane, a network of hydrogen bonds was formed. This led to deformation of the interacting leaflet and dint formation. The bilayer response to the deformation depended on its phase state. In a gel-phase bilayer, diffusion of lipids is restricted therefore chain melting occurred in both leaflets of the bilayer. In the case of a fluid-phase bilayer, lateral diffusion is possible, and lipid polar head groups were excluded from the contact area. As a result, the bilayer became thinner and a large hydrophobic area was formed. We assume that relative ability of a bilayer to come through lipid redistribution process defines the rate of initial stages of the catalysis.


Asunto(s)
Venenos de Abeja/enzimología , Abejas/enzimología , Proteínas de Insectos/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Fosfolipasas A2/química , Animales , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas
6.
Ultrasound Med Biol ; 47(3): 603-619, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33250219

RESUMEN

Infected abscesses are walled-off collections of pus and bacteria. They are a common sequela of complications in the setting of surgery, trauma, systemic infections and other disease states. Current treatment is typically limited to antibiotics with long-term catheter drainage, or surgical washout when inaccessible to percutaneous drainage or unresponsive to initial care efforts. Antibiotic resistance is also a growing concern. Although bacteria can develop drug resistance, they remain susceptible to thermal and mechanical damage. In particular, short pulses of focused ultrasound (i.e., histotripsy) generate mechanical damage through localized cavitation, representing a potential new paradigm for treating abscesses non-invasively, without the need for long-term catheterization and antibiotics. In this pilot study, boiling and cavitation histotripsy treatments were applied to subcutaneous and intramuscular abscesses developed in a novel porcine model. Ultrasound imaging was used to evaluate abscess maturity for treatment monitoring and assessment of post-treatment outcomes. Disinfection was quantified by counting bacteria colonies from samples aspirated before and after treatment. Histopathological evaluation of the abscesses was performed to identify changes resulting from histotripsy treatment and potential collateral damage. Cavitation histotripsy was more successful in reducing the bacterial load while having a smaller treatment volume compared with boiling histotripsy. The results of this pilot study suggest focused ultrasound may lead to a technology for in situ treatment of acoustically accessible abscesses.


Asunto(s)
Absceso/terapia , Ultrasonido Enfocado de Alta Intensidad de Ablación , Ultrasonografía Intervencional , Animales , Modelos Animales de Enfermedad , Femenino , Proyectos Piloto , Porcinos
7.
Aging (Albany NY) ; 12(18): 18693-18715, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32970613

RESUMEN

Dietary restriction (DR) is the strategy ameliorating the morbidity of various pathologies, including age-associated diseases. Acute kidney injury (AKI) remains a problem for the elderly with DR being a promising approach for diminishing its consequences. We evaluated the possible nephroprotective potential of short-term DR in young and old rats. DR in young rats resulted in pronounced beneficial effects normalizing lipid metabolism (triglycerides concentration, adiponectin level) activating autophagic-lysosomal system evaluated by LC3II/LC3I ratio, LAMP1, p62/SQSTM1 levels, and LysoTracker Green staining. DR had a remarkable recovering effect on mitochondrial structure and functions including regaining of mitochondrial membrane potential, the elevation of SIRT-3, PGC-1α, Bcl-XL levels and partial restoration of ultrastructure. The beneficial effects of DR resulted in the mitigation of oxidative stress including a decrease in levels of protein carbonylation and lipid peroxidation. Aging led to decreased activity of autophagy, elevated oxidative stress and impaired kidney regenerative capacity. Eventually, in old rats, even 8-week DR was not able to ameliorate AKI, but it caused some rejuvenating effects including elevation of mitochondrial membrane potential and Bcl-XL levels, as well as lowered severity of the oxidative stress. Thus, the age-associated decline of protective signaling demands extended DR to achieve nephroprotective potential in old animals.

8.
Eur J Pharm Biopharm ; 150: 131-142, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32151727

RESUMEN

PLGA (poly(lactic-co-glycolic acid))-based nanoparticles (NPs) are promising drug carrier systems because of their excellent biocompatibility and ability for sustained drug release. However, it is not well understood how the kinetics of such drug delivery system perform in the retinal blood circulation as imaged in vivo and in real time. To answer this question, PLGA NPs were loaded either with lipophilic carbocyanine perchlorate (DiI) or hydrophilic Rhodamine 123 (Rho123) and coated with poloxamer 188 (P188): PLGA-DiI/P188 and PLGA-Rho123/P188. All particles had narrow size distributions around 130 nm, spherical shape and negative potential. Subsequently, we performed in vivo real-time imaging of retinal blood vessels, combined with ex vivo microscopy to monitor the kinetics and to detect location of those two fluorescent markers. We found that DiI signals were long lasting, detectable >90 min in blood vessels after intravenous injection as visible by homogeneous labelling of the vessel wall as well as by spots in the lumen of blood vessels. In contrast, Rho123 signals mostly disappeared after 15 min post intravenous injection in such compartment. To explore how PLGA NP-loaded cargoes are released in the retina in vivo, we thereafter monitored the Cyanine5.5 amine (Cy5.5) covalently linked PLGA polymer (Cy5.5-PLGA) in parallel to DiI and Rho123. The Cy5.5 signal from PLGA polymer was detectable in the retina vessels >90 min for both, the Cy5.5-PLGA-DiI/P188 and Cy5.5-PLGA-Rho123/P188 groups. Microscopy of the ex vivo retina tissue revealed partial level of colocalization of PLGA with DiI but no colocalization between PLGA and Rho123 at 2 h post injection. This indicates that at least a fraction of the lipophilic DiI was preserved within NPs, whereas no hydrophilic Rho123 was associated with NPs at that time point. In conclusion, the properties of PLGA carrier-cargo system in the blood circulation of the retina might be strongly influenced by the combination of factors, including the individual properties of loaded compounds and blood milieu. Thus, it is unlikely that a single nanoparticle formulation will be identified that is universally effective for the delivery of different compounds.


Asunto(s)
Carbocianinas/metabolismo , Portadores de Fármacos , Colorantes Fluorescentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Vasos Retinianos/metabolismo , Rodamina 123/metabolismo , Animales , Carbocianinas/química , Composición de Medicamentos , Colorantes Fluorescentes/química , Cinética , Masculino , Poloxámero/química , Ratas , Flujo Sanguíneo Regional , Rodamina 123/química
9.
Antioxidants (Basel) ; 8(6)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31197113

RESUMEN

Induced and frequently unwanted alterations in the mitochondrial structure and functions are a key component of the pathological cascade in many kidney pathologies, including those associated with acute damage. One of the principal pathogenic elements causing mitochondrial dysfunction in Acute Kidney Injury (AKI) is oxidative stress. After ischemia and nephrotoxic action of drugs, sepsis and systemic inflammation are the most frequent causes of AKI. As the kidney suffers from oxidative stress during sepsis, one of the most promising approaches to alleviate such damaging consequences is the use of antioxidants. Considering administration of lipopolysaccharide (LPS) as a model of sepsis, we demonstrate that the mitochondria of neonatal renal tissue are severely affected by LPS-induced AKI, with pathological ultrastructural changes observed in both the mitochondria of the renal tubular epithelium and the vascular endothelium. Upon mitochondrial damage, we evaluated the effect of the mitochondria-targeted antioxidant plastoquinol decylrhodamine 19 (SkQR1) on the development of acute renal failure in newborn rats associated with systemic inflammation induced by the administration of LPS. We found that SkQR1 administration 3 h before LPS led to decreased urinal expression of the AKI marker neutrophil gelatinase-associated lipocalin 2 (NGAL), in addition to a decrease in urea and creatinine levels in the blood. Additionally, an observed impairment of proliferative activity in the neonatal kidney caused by LPS treatment was also prevented by the treatment of rat pups with SkQR1. Thus, one of the key events for renal tissue damage in neonatal sepsis is an alteration in the structure and function of the mitochondria and the mitochondria-targeted antioxidant SkQR1 is an effective nephroprotective agent, which protects the neonatal kidney from sepsis-induced AKI.

10.
Bioconjug Chem ; 30(4): 1098-1113, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30817133

RESUMEN

Enzyme-responsive liposomes release their cargo in response to pathologically increased levels of enzymes at the target site. We report herein an assembly of phospholipase A2-responsive liposomes based on colchicinoid lipid prodrugs incorporated into lipid bilayer of the nanosized vesicles. The liposomes were constructed to addresses two important issues: (i) the lipid prodrugs were designed to fit the structure of the enzyme binding site; and (ii) the concept of lateral pressure profile was used to design lipid prodrugs that introduce almost no distortions into the lipid bilayer packing, thus ensuring that corresponding liposomes are stable. The colchicinoid agents exhibit antiproliferative activity in subnanomolar range of concentrations.


Asunto(s)
Colchicina/química , Liposomas , Fosfolípidos/química , Profármacos/química , Fenómenos Biofísicos , Proliferación Celular/efectos de los fármacos , Colchicina/farmacología , Fluoresceínas/química , Humanos , Membrana Dobles de Lípidos , Fosfolipasas A2/metabolismo
11.
Biofabrication ; 10(3): 034104, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29848793

RESUMEN

Tissue spheroids have been proposed as building blocks in 3D biofabrication. Conventional magnetic force-driven 2D patterning of tissue spheroids requires prior cell labeling by magnetic nanoparticles, meanwhile a label-free approach for 3D magnetic levitational assembly has been introduced. Here we present first time report on rapid assembly of 3D tissue construct using scaffold-free, nozzle-free and label-free magnetic levitation of tissue spheroids. Chondrospheres of standard size, shape and capable to fusion have been biofabricated from primary sheep chondrocytes using non-adhesive technology. Label-free magnetic levitation was performed using a prototype device equipped with permanent magnets in presence of gadolinium (Gd3+) in culture media, which enables magnetic levitation. Mathematical modeling and computer simulations were used for prediction of magnetic field and kinetics of tissue spheroids assembly into 3D tissue constructs. First, we used polystyrene beads to simulate the assembly of tissue spheroids and to determine the optimal settings for magnetic levitation in presence of Gd3+. Second, we proved the ability of chondrospheres to assemble rapidly into 3D tissue construct in the permanent magnetic field in the presence of Gd3+. Thus, scaffold- and label-free magnetic levitation of tissue spheroids is a promising approach for rapid 3D biofabrication and attractive alternative to label-based magnetic force-driven tissue engineering.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Campos Magnéticos , Ingeniería de Tejidos/instrumentación , Animales , Condrocitos/citología , Simulación por Computador , Diseño de Equipo , Esferoides Celulares/citología
12.
Ultrasound Med Biol ; 44(9): 1996-2008, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29941214

RESUMEN

This study addresses inactivation of E. coli in either 5- or 10-mL volumes, which were 50- to 100-fold greater than used in an earlier study (Brayman et al. 2017). Cells were treated with 1-MHz pulsed high-intensity focused ultrasound (10 cycles, 2-kHz repetition frequency, +65/-12.8 MPa focal pressures). The surviving fraction was assessed by coliform assay, and inactivation demonstrated curvilinear kinetics. The reduction of surviving fraction to 50% required 2.5 or 6 min in 5- or 10-mL samples, respectively. Exposure of 5 mL for 20 min reduced the surviving fraction to ∼1%; a similar exposure of 10-mL samples reduced the surviving fraction to ∼10%. Surviving cells from 5-min exposures appeared normal under light microscopy, with minimal debris; after 20 min, debris dominated. Transmission electron microscopy images of insonated samples showed some undamaged cells, a few damaged but largely intact cells and comminuted debris. Cellular damage associated with substantive but incomplete levels of inactivation can be variable, ranging from membrane holes tens of nanometers in diameter to nearly complete comminution.


Asunto(s)
Escherichia coli , Ondas de Choque de Alta Energía , Plancton , Supervivencia Celular , Células Cultivadas , Cinética , Microscopía Electrónica de Transmisión
13.
Mol Imaging Biol ; 15(2): 148-54, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22811020

RESUMEN

PURPOSE: In this study, the contrasting properties of human serum albumin nanoparticles (HSA-NPs) loaded with gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and coated with transferrin in MRI in mice are evaluated. PROCEDURES: HSA-NPs were conjugated with Gd-DTPA (Gd-HSA-NPs) and coupled with transferrin (Gd-HSA-NP-Tf). Mice underwent MRI before or after injection of Gd-DTPA, Gd-HSA-NP, or Gd-HSA-NP-Tf. RESULTS: All the studied contrast agents provided a contrast enhancement (CE) in the blood, heart muscle, and liver. Compared to Gd-DTPA, CE with HSA-NP was achieved at lower Gd doses. Gd-HSA-NP-Tf yielded significantly higher CE than Gd-HSA-NP in the skeletal muscle, blood, cardiac muscle, and liver (p < 0.05). Gd-HSA-NP-Tf achieved a significantly higher CE than Gd-HSA-NP and Gd-DTPA in the blood, cardiac muscle, and liver (p < 0.05). In the brain, only Gd-HSA-NP-Tf was found to cause a significant CE (p < 0.05). CONCLUSIONS: The Gd-HSA nanoparticles have potential as MRI contrast agents. In particular, Gd-HSA-NP-Tf has a potential as a specific contrast agent for the brain, while the blood-brain barrier is still intact, as well as in the heart, liver, and skeletal muscle.


Asunto(s)
Albúminas/farmacocinética , Medios de Contraste/química , Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Transferrina/farmacocinética , Albúminas/química , Análisis de Varianza , Animales , Gadolinio DTPA/química , Humanos , Masculino , Ratones , Albúmina Sérica/química , Albúmina Sérica/farmacocinética , Relación Señal-Ruido , Distribución Tisular , Transferrina/química
14.
Mol Imaging ; 11(4): 272-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22954143

RESUMEN

Different from regular small molecule contrast agents, nanoparticle-based contrast agents have a longer circulation time and can be modified with ligands to confer tissue-specific contrasting properties. We evaluated the tissue distribution of polymeric nanoparticles (NPs) prepared from human serum albumin (HSA), loaded with gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) (Gd-HSA-NP), and coated with folic acid (FA) (Gd-HSA-NP-FA) in mice by magnetic resonance imaging (MRI). FA increases the affinity of the Gd-HSA-NP to FA receptor-expressing cells. Clinical 3 T MRI was used to evaluate the signal intensities in the different organs of mice injected with Gd-DTPA, Gd-HSA-NP, or Gd-HSA-NP-FA. Signal intensities were measured and standardized by calculating the signal to noise ratios. In general, the NP-based contrast agents provided stronger contrasting than Gd-DTPA. Gd-HSA-NP-FA provided a significant contrast enhancement (CE) in the brain (p  =  .0032), whereas Gd-DTPA or Gd-HSA-NP did not. All studied MRI contrast agents showed significant CE in the blood, kidney, and liver (p < .05). Gd-HSA-NP-FA elicited significantly higher CE in the blood than Gd-HSA-NP (p  =  .0069); Gd-HSA-NP and Gd-HSA-NP-FA did not show CE in skeletal muscle and gallbladder; Gd-HSA-NP, but not Gd-HSA-NP-FA, showed CE in the cardiac muscle. Gd-HSA-NP-FA has potential as an MRI contrast agent in the brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Medios de Contraste , Ácido Fólico , Gadolinio DTPA , Imagen por Resonancia Magnética , Nanopartículas , Albúmina Sérica , Animales , Humanos , Masculino , Ratones , Nanopartículas/ultraestructura , Especificidad de Órganos , Cintigrafía , Relación Señal-Ruido , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...