Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 21661, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303863

RESUMEN

Using a sample from a terrestrial hot spring (pH 6.8, 60 °C), we enriched a thermophilic microbial consortium performing anaerobic autotrophic oxidation of hydrothermal siderite (FeCO3), with CO2/bicarbonate as the electron acceptor and the only carbon source, producing green rust and acetate. In order to reproduce Proterozoic environmental conditions during the deposition of banded iron formation (BIF), we incubated the microbial consortium in a bioreactor that contained an unmixed anoxic layer of siderite, perfectly mixed N2/CO2-saturated liquid medium and microoxic (2% O2) headspace. Long-term incubation (56 days) led to the formation of magnetite (Fe3O4) instead of green rust as the main product of Fe(II) oxidation, the precipitation of newly formed metabolically induced siderite in the anoxic zone, and the deposition of hematite (Fe2O3) on bioreactor walls over the oxycline boundary. Acetate was the only metabolic product of CO2/bicarbonate reduction. Thus, we have demonstrated the ability of autotrophic thermophilic microbial consortium to perform a short cycle of iron minerals transformation: siderite-magnetite-siderite, accompanied by magnetite and hematite accumulation. This cycle is believed to have driven the evolution of the early biosphere, leading to primary biomass production and deposition of the main iron mineral association of BIF.


Asunto(s)
Anaerobiosis , Procesos Autotróficos , Carbonatos/metabolismo , Compuestos Férricos/metabolismo , Manantiales de Aguas Termales/microbiología , Hierro/metabolismo , Consorcios Microbianos/fisiología , Acetatos/metabolismo , Bicarbonatos/metabolismo , Biomasa , Reactores Biológicos , Dióxido de Carbono/metabolismo , Transporte de Electrón , Óxido Ferrosoférrico , Calor , Nitrógeno/metabolismo , Oxidación-Reducción
2.
ISME J ; 14(2): 425-436, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31641279

RESUMEN

Redox-active iron minerals can act as energy sources or electron-transferring mediators in microbial syntrophic associations, being important means of interspecies metabolic cooperation in sedimentary environments. Alkaline conditions alter the thermodynamic stability of iron minerals, influencing their availability for interspecies syntrophic interactions. We have modeled anaerobic alkaliphilic microbial associations in ethanol-oxidizing co-culture of an obligate syntroph Candidatus "Contubernalis alkalaceticum" and a facultative lithotroph Geoalkalibacter ferrihydriticus, which is capable of dissimilatory Fe(III) reduction and homoacetogenic oxidation of Fe(II) with CO2. The co-cultures were cultivated with thermodynamically metastable ferric-containing ferrihydrite, or ferrous-containing siderite, or without minerals. Mössbauer spectral analysis revealed the transformation of both minerals to the stable magnetite. In the presence of ferrihydrite, G. ferrihydriticus firstly reduced Fe(III) with ethanol and then switched to syntrophic homoacetogenesis, providing the growth of obligate syntroph on ethanol. The ability of G. ferrihydriticus to accept hydrogen from its syntrophic partner and produce extra acetate from carbonate during ethanol oxidation was confirmed by co-culture growth without minerals. In the presence of siderite, G. ferrihydriticus performed homoacetogenesis using two electron donors simultaneously- siderite and hydrogen. Pieces of evidence for direct and indirect hydrogen-mediated electron exchange between partner organisms were obtained. Relative abundancies of partner organisms and the rate of acetate production by their co-cultures were strongly determined by thermodynamic benefits, which G. ferrihydriticus got from redox transformations of iron minerals. Even the minor growth of G. ferrihydriticus sustained the growth of the syntroph. Accordingly, microbe-to-mineral interactions could represent underestimated drivers of syntrophic interactions in alkaline sedimentary environments.


Asunto(s)
Acetatos/metabolismo , Deltaproteobacteria/metabolismo , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Firmicutes/metabolismo , Interacciones Microbianas , Minerales/metabolismo , Anaerobiosis , Carbonatos/metabolismo , Deltaproteobacteria/crecimiento & desarrollo , Etanol/metabolismo , Óxido Ferrosoférrico/metabolismo , Firmicutes/crecimiento & desarrollo , Oxidación-Reducción , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA