Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(6): e3002616, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38865418

RESUMEN

The gastrointestinal tract is densely colonized by a polymicrobial community known as the microbiota which serves as primary line of defence against pathogen invasion. The microbiota can limit gut-luminal pathogen growth at different stages of infection. This can be traced to specific commensal strains exhibiting direct or indirect protective functions. Although these mechanisms hold the potential to develop new approaches to combat enteric pathogens, they remain far from being completely described. In this study, we investigated how a mouse commensal Escherichia coli can outcompete Salmonella enterica serovar Typhimurium (S. Tm). Using a salmonellosis mouse model, we found that the commensal E. coli 8178 strain relies on a trojan horse trap strategy to limit S. Tm expansion in the inflamed gut. Combining mutants and reporter tools, we demonstrated that inflammation triggers the expression of the E. coli 8178 antimicrobial microcin H47 toxin which, when fused to salmochelin siderophores, can specifically alter S. Tm growth. This protective function was compromised upon disruption of the E. coli 8178 tonB-dependent catecholate siderophore uptake system, highlighting a previously unappreciated crosstalk between iron intake and microcin H47 activity. By identifying the genetic determinants mediating S. Tm competition, our work not only provides a better mechanistic understanding of the protective function displayed by members of the gut microbiota but also further expands the general contribution of microcins in bacterial antagonistic relationships. Ultimately, such insights can open new avenues for developing microbiota-based approaches to better control intestinal infections.


Asunto(s)
Escherichia coli , Inflamación , Salmonella typhimurium , Sideróforos , Animales , Escherichia coli/metabolismo , Escherichia coli/genética , Sideróforos/metabolismo , Ratones , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/metabolismo , Inflamación/metabolismo , Inflamación/microbiología , Ratones Endogámicos C57BL , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Microbioma Gastrointestinal , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , Femenino , Hierro/metabolismo , Simbiosis , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo
2.
Nat Microbiol ; 9(4): 1103-1116, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503975

RESUMEN

Microbiomes feature recurrent compositional structures under given environmental conditions. However, these patterns may conceal diverse underlying population dynamics that require intrastrain resolution. Here we developed a genomic tagging system, termed wild-type isogenic standardized hybrid (WISH)-tags, that can be combined with quantitative polymerase chain reaction and next-generation sequencing for microbial strain enumeration. We experimentally validated the performance of 62 tags and showed that they can be differentiated with high precision. WISH-tags were introduced into model and non-model bacterial members of the mouse and plant microbiota. Intrastrain priority effects were tested using one species of isogenic barcoded bacteria in the murine gut and the Arabidopsis phyllosphere, both with and without microbiota context. We observed colonization resistance against late-arriving strains of Salmonella Typhimurium in the mouse gut, whereas the phyllosphere accommodated Sphingomonas latecomers in a manner proportional to their presence at the late inoculation timepoint. This demonstrates that WISH-tags are a resource for deciphering population dynamics underlying microbiome assembly across biological systems.


Asunto(s)
Microbiota , Animales , Ratones , Microbiota/genética , Salmonella typhimurium/genética , Bacterias , Dinámica Poblacional
3.
PLoS Pathog ; 19(9): e1011687, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37769028

RESUMEN

A. baumannii can rapidly acquire new resistance mechanisms and persist on abiotic surface, enabling the colonization of asymptomatic human host. In Acinetobacter the type VI secretion system (T6SS) is involved in twitching, surface motility and is used for interbacterial competition allowing the bacteria to uptake DNA. A. baumannii possesses a T6SS that has been well studied for its regulation and specific activity, but little is known concerning its assembly and architecture. The T6SS nanomachine is built from three architectural sub-complexes. Unlike the baseplate (BP) and the tail-tube complex (TTC), which are inherited from bacteriophages, the membrane complex (MC) originates from bacteria. The MC is the most external part of the T6SS and, as such, is subjected to evolution and adaptation. One unanswered question on the MC is how such a gigantesque molecular edifice is inserted and crosses the bacterial cell envelope. The A. baumannii MC lacks an essential component, the TssJ lipoprotein, which anchors the MC to the outer membrane. In this work, we studied how A. baumannii compensates the absence of a TssJ. We have characterized for the first time the A. baumannii's specific T6SS MC, its unique characteristic, its membrane localization, and assembly dynamics. We also defined its composition, demonstrating that its biogenesis employs three Acinetobacter-specific envelope-associated proteins that define an intricate network leading to the assembly of a five-proteins membrane super-complex. Our data suggest that A. baumannii has divided the function of TssJ by (1) co-opting a new protein TsmK that stabilizes the MC and by (2) evolving a new domain in TssM for homo-oligomerization, a prerequisite to build the T6SS channel. We believe that the atypical species-specific features we report in this study will have profound implication in our understanding of the assembly and evolutionary diversity of different T6SSs, that warrants future investigation.

4.
Microbiol Spectr ; 7(4)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31298206

RESUMEN

The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells. The injection apparatus is composed of a baseplate on which is built a contractile tail tube/sheath complex. The inner tube, topped by the spike complex, is propelled outside of the cell by the contraction of the sheath. The injection system is anchored to the cell envelope and oriented towards the cell exterior by a trans-envelope complex. Effectors delivered by the T6SS are loaded within the inner tube or on the spike complex and can target prokaryotic and/or eukaryotic cells. Here we summarize the structure, assembly, and mechanism of action of the T6SS. We also review the function of effectors and their mode of recruitment and delivery.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VI/química , Sistemas de Secreción Tipo VI/metabolismo , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Transporte de Proteínas , Sistemas de Secreción Tipo VI/genética
5.
EMBO J ; 38(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30877094

RESUMEN

Bacteria have evolved macromolecular machineries that secrete effectors and toxins to survive and thrive in diverse environments. The type VI secretion system (T6SS) is a contractile machine that is related to Myoviridae phages. It is composed of a phage tail-like structure inserted in the bacterial cell envelope by a membrane complex (MC) comprising the TssJ, TssL and TssM proteins. We previously reported the low-resolution negative-stain electron microscopy structure of the enteroaggregative Escherichia coli MC and proposed a rotational 5-fold symmetry with a TssJ:TssL:TssM stoichiometry of 2:2:2. Here, cryo-electron tomography analyses of the T6SS MC confirm the 5-fold symmetry in situ and identify the regions of the structure that insert into the bacterial membranes. A high-resolution model obtained by single-particle cryo-electron microscopy highlights new features: five additional copies of TssJ, yielding a TssJ:TssL:TssM stoichiometry of 3:2:2, an 11-residue loop in TssM, protruding inside the lumen of the MC and constituting a functionally important periplasmic gate, and hinge regions. Based on these data, we propose an updated model on MC structure and dynamics during T6SS assembly and function.


Asunto(s)
Sistemas de Secreción Tipo VI/química , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Bacterianos/química , Sistemas de Secreción Bacterianos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína
6.
Nat Microbiol ; 3(12): 1404-1416, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30323254

RESUMEN

To support their growth in a competitive environment and cause pathogenesis, bacteria have evolved a broad repertoire of macromolecular machineries to deliver specific effectors and toxins. Among these multiprotein complexes, the type VI secretion system (T6SS) is a contractile nanomachine that targets both prokaryotic and eukaryotic cells. The T6SS comprises two functional subcomplexes: a bacteriophage-related tail structure anchored to the cell envelope by a membrane complex. As in other contractile injection systems, the tail is composed of an inner tube wrapped by a sheath and built on the baseplate. In the T6SS, the baseplate is not only the tail assembly platform, but also docks the tail to the membrane complex and hence serves as an evolutionary adaptor. Here we define the biogenesis pathway and report the cryo-electron microscopy (cryo-EM) structure of the wedge protein complex of the T6SS from enteroaggregative Escherichia coli (EAEC). Using an integrative approach, we unveil the molecular architecture of the whole T6SS baseplate and its interaction with the tail sheath, offering detailed insights into its biogenesis and function. We discuss architectural and mechanistic similarities but also reveal key differences with the T4 phage and Mu phage baseplates.


Asunto(s)
Bacteriófagos/metabolismo , Escherichia coli/metabolismo , Complejos Multiproteicos/química , Sistemas de Secreción Tipo VI/química , Sistemas de Secreción Tipo VI/fisiología , Membrana Celular , Microscopía por Crioelectrón , Escherichia coli/genética , Proteínas de Escherichia coli/química , Modelos Moleculares , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Sistemas de Secreción Tipo VI/genética
7.
Nat Microbiol ; 2: 17103, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28650463

RESUMEN

The type VI secretion system (T6SS) is a multiprotein machine widespread in Gram-negative bacteria that delivers toxins into both eukaryotic and prokaryotic cells. The mechanism of action of the T6SS is comparable to that of contractile myophages. The T6SS builds a tail-like structure made of an inner tube wrapped by a sheath, assembled under an extended conformation. Contraction of the sheath propels the inner tube towards the target cell. The T6SS tail is assembled on a platform-the baseplate-which is functionally similar to bacteriophage baseplates. In addition, the baseplate docks the tail to a trans-envelope membrane complex that orients the tail towards the target. Here, we report the crystal structure of TssK, a central component of the T6SS baseplate. We show that TssK is composed of three domains, and establish the contribution of each domain to the interaction with TssK partners. Importantly, this study reveals that the N-terminal domain of TssK is structurally homologous to the shoulder domain of phage receptor-binding proteins, and the C-terminal domain binds the membrane complex. We propose that TssK has conserved the domain of attachment to the virion particle but has evolved the reception domain to use the T6SS membrane complex as receptor.


Asunto(s)
Bacteriófagos/química , Escherichia coli/química , Sistemas de Secreción Tipo VI/química , Proteínas Virales/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Cristalización , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Transporte de Proteínas , Receptores Virales/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...