Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Pharmacol Exp Ther ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627096

RESUMEN

Organic anions (OA) are compounds including drugs or toxicants that are negatively charged at physiological pH and are typically transported by Organic Anion Transporters (OATs). Human OAT4 (SLC22A11) is expressed in the apical membrane of renal proximal tubules. Although there is no rodent ortholog of hOAT4, rodents express Oat5 (Slc22a19), an anion exchanger that is also localized to the apical membrane of renal proximal tubule cells. The purpose of this study was to determine the functional similarity between mouse Oat5 and human OAT4. Chinese hamster ovary (CHO) cells expressing SLC22A11 or Slc22a19 were used to assess the transport characteristics of radiolabeled ochratoxin (OTA). We determined the kinetics of OTA transport; the resulting Kt and Jmax values were very similar for both hOAT4 and mOat5: Kt 3.9 and 7.2 µM, respectively, & Jmax 4.4 and 3.9 pmol/cm2, respectively. For the profile of OTA inhibition by OAs, IC50 values were determined for several clinically important drugs and toxicants. The resulting IC50 values ranged from 9 µM for indomethacin to ~600 µM for the diuretic hydrochlorothiazide. We measured the efflux of OTA from preloaded cells; both hOAT4 and mOat5 supported the efflux of OTA. These data support the hypothesis that OAT4 and Oat5 are functional orthologs and share selectivity for OTA both for reabsorption and secretion. Significance Statement This study compares the selectivity profile between human OAT4 and mouse Oat5. Our data revealed a similar selectivity profile for OTA reabsorption and secretion by these two transporters, thereby supporting the hypothesis that hOAT4 and mOat5, while not genetic orthologs, behave as functional orthologs for both uptake and efflux. These data will be instrumental in selecting an appropriate animal model when studying the renal disposition of anionic drugs and toxicants.

2.
J Biol Chem ; 300(2): 105655, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237682

RESUMEN

Endoplasmic reticulum stress is associated with insulin resistance and the development of nonalcoholic fatty liver disease. Deficiency of the endoplasmic reticulum stress response T-cell death-associated gene 51 (TDAG51) (TDAG51-/-) in mice promotes the development of high-fat diet (HFD)-induced obesity, fatty liver, and hepatic insulin resistance. However, whether this effect is due specifically to hepatic TDAG51 deficiency is unknown. Here, we report that hepatic TDAG51 protein levels are consistently reduced in multiple mouse models of liver steatosis and injury as well as in liver biopsies from patients with liver disease compared to normal controls. Delivery of a liver-specific adeno-associated virus (AAV) increased hepatic expression of a TDAG51-GFP fusion protein in WT, TDAG51-/-, and leptin-deficient (ob/ob) mice. Restoration of hepatic TDAG51 protein was sufficient to increase insulin sensitivity while reducing body weight and fatty liver in HFD fed TDAG51-/- mice and in ob/ob mice. TDAG51-/- mice expressing ectopic TDAG51 display improved Akt (Ser473) phosphorylation, post-insulin stimulation. HFD-fed TDAG51-/- mice treated with AAV-TDAG51-GFP displayed reduced lipogenic gene expression, increased beta-oxidation and lowered hepatic and serum triglycerides, findings consistent with reduced liver weight. Further, AAV-TDAG51-GFP-treated TDAG51-/- mice exhibited reduced hepatic precursor and cleaved sterol regulatory-element binding proteins (SREBP-1 and SREBP-2). In vitro studies confirmed the lipid-lowering effect of TDAG51 overexpression in oleic acid-treated Huh7 cells. These studies suggest that maintaining hepatic TDAG51 protein levels represents a viable therapeutic approach for the treatment of obesity and insulin resistance associated with nonalcoholic fatty liver disease.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Muerte Celular , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Linfocitos T/metabolismo , Masculino
3.
Clin Pharmacol Ther ; 114(4): 780-794, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37404197

RESUMEN

The US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA) guidances on small-molecule drug-drug interactions (DDIs), with input from the International Transporter Consortium (ITC), recommend the evaluation of nine drug transporters. Although other clinically relevant drug uptake and efflux transporters have been discussed in ITC white papers, they have been excluded from further recommendation by the ITC and are not included in current regulatory guidances. These include the ubiquitously expressed equilibrative nucleoside transporters (ENT) 1 and ENT2, which have been recognized by the ITC for their potential role in clinically relevant nucleoside analog drug interactions for patients with cancer. Although there is comparatively limited clinical evidence supporting their role in DDI risk or other adverse drug reactions (ADRs) compared with the nine highlighted transporters, several in vitro and in vivo studies have identified ENT interactions with non-nucleoside/non-nucleotide drugs, in addition to nucleoside/nucleotide analogs. Some noteworthy examples of compounds that interact with ENTs include cannabidiol and selected protein kinase inhibitors, as well as the nucleoside analogs remdesivir, EIDD-1931, gemcitabine, and fialuridine. Consequently, DDIs involving the ENTs may be responsible for therapeutic inefficacy or off-target toxicity. Evidence suggests that ENT1 and ENT2 should be considered as transporters potentially involved in clinically relevant DDIs and ADRs, thereby warranting further investigation and regulatory consideration.


Asunto(s)
Relevancia Clínica , Transportador Equilibrativo 2 de Nucleósido , Humanos , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Descubrimiento de Drogas
4.
Drug Metab Dispos ; 51(9): 1157-1168, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37258305

RESUMEN

The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Masculino , Humanos , Barrera Hematotesticular/metabolismo , Xenobióticos/metabolismo , Testículo/metabolismo , Transporte Biológico , Células de Sertoli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Virus Zika/metabolismo , Infección por el Virus Zika/metabolismo
5.
Drug Metab Dispos ; 51(8): 970-981, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37137719

RESUMEN

Alterations in renal elimination processes of glomerular filtration and active tubular secretion by renal transporters can result in adverse drug reactions. Nonalcoholic steatohepatitis (NASH) alters hepatic transporter expression and xenobiotic elimination, but until recently, renal transporter alterations in NASH were unknown. This study investigates renal transporter changes in rodent models of NASH to identify a model that recapitulates human alterations. Quantitative protein expression by surrogate peptide liquid chromatography-coupled mass spectrometry (LC-MS/MS) on renal biopsies from NASH patients was used for concordance analysis with rodent models, including methionine/choline deficient (MCD), atherogenic (Athero), or control rats and Leprdb/db MCD (db/db), C57BL/6J fast-food thioacetamide (FFDTH), American lifestyle-induced obesity syndrome (ALIOS), or control mice. Demonstrating clinical similarity to NASH patients, db/db, FFDTH, and ALIOS showed decreases in glomerular filtration rate (GFR) by 76%, 28%, and 24%. Organic anion transporter 3 (OAT3) showed an upward trend in all models except the FFDTH (from 3.20 to 2.39 pmol/mg protein), making the latter the only model to represent human OAT3 changes. OAT5, a functional ortholog of human OAT4, significantly decreased in db/db, FFDTH, and ALIOS (from 4.59 to 0.45, 1.59, and 2.83 pmol/mg protein, respectively) but significantly increased for MCD (1.67 to 4.17 pmol/mg protein), suggesting that the mouse models are comparable to human for these specific transport processes. These data suggest that variations in rodent renal transporter expression are elicited by NASH, and the concordance analysis enables appropriate model selection for future pharmacokinetic studies based on transporter specificity. These models provide a valuable resource to extrapolate the consequences of human variability in renal drug elimination. SIGNIFICANCE STATEMENT: Rodent models of nonalcoholic steatohepatitis that recapitulate human renal transporter alterations are identified for future transporter-specific pharmacokinetic studies to facilitate the prevention of adverse drug reactions due to human variability.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratas , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Roedores/metabolismo , Cromatografía Liquida , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Hígado/metabolismo , Metionina/metabolismo , Colina/metabolismo , Obesidad/metabolismo , Modelos Animales de Enfermedad , Proteínas de Transporte de Membrana/metabolismo
6.
ACS Omega ; 8(13): 12532-12537, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033868

RESUMEN

Pyronaridine, tilorone and quinacrine are cationic molecules that have in vitro activity against Ebola, SARS-CoV-2 and other viruses. All three molecules have also demonstrated in vivo activity against Ebola in mice, while pyronaridine showed in vivo efficacy against SARS-CoV-2 in mice. We have recently tested these molecules and other antivirals against human organic cation transporters (OCTs) and apical multidrug and toxin extruders (MATEs). Quinacrine was found to be an inhibitor of OCT2, while tilorone and pyronaridine were less potent, and these displayed variability depending on the substrate used. To assess whether any of these three molecules have other potential interactions with additional transporters, we have now screened them at 10 µM against various human efflux and uptake transporters including P-gp, OATP1B3, OAT1, OAT3, MRP1, MRP2, MRP3, BCRP, as well as confirmational testing against OCT1, OCT2, MATE1 and MATE2K. Interestingly, in this study tilorone appears to be a more potent inhibitor of OCT1 and OCT2 than pyronaridine or quinacrine. However, both pyronaridine and quinacrine appear to be more potent inhibitors of MATE1 and MATE2K. None of the three compounds inhibited MRP1, MRP2, MRP3, OAT1, OAT3, P-gp or OATP1B3. Similarly, we previously showed that tilorone and pyronaridine do not inhibit OATP1B1 and have confirmed that quinacrine behaves similarly. In total, these observations suggest that the three compounds only appear to interact with OCTs and MATEs to differing extents, suggesting they may be involved in fewer clinically relevant drug-transporter interactions involving pharmaceutical substrates of the other major transporters tested.

7.
Drug Metab Dispos ; 51(5): 560-571, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36732077

RESUMEN

Transporters are involved in the movement of many physiologically important molecules across cell membranes and have a substantial impact on the pharmacological and toxicological effect of xenobiotics. Many transporters have been studied in the context of disposition to, or toxicity in, organs such as the kidney and liver; however, transporters in the testes are increasingly gaining recognition for their role in drug transport across the blood-testis barrier (BTB). The BTB is an epithelial membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules that form intercellular junctional complexes to protect developing germ cells from the external environment. Consequently, many charged or large polar molecules cannot cross this barrier without assistance from a transporter. SCs express a variety of drug uptake and efflux transporters to control the flux of endogenous and exogenous molecules across the BTB. Recent studies have identified several transport pathways in SCs that allow certain drugs to circumvent the human BTB. These pathways may exist in other species, such as rodents and nonhuman primates; however, there is (1) a lack of information on their expression and/or localization in these species, and (2) conflicting reports on localization of some transporters that have been evaluated in rodents compared with humans. This review outlines the current knowledge on the expression and localization of pharmacologically relevant drug transporters in human testes and calls attention to the insufficient and contradictory understanding of testicular transporters in other species that are commonly used in drug disposition and toxicity studies. SIGNIFICANCE STATEMENT: While the expression, localization, and function of many xenobiotic transporters have been studied in organs such as the kidney and liver, the characterization of transporters in the testes is scarce. This review summarizes the expression and localization of common pharmacologically-relevant transporters in human testes that have significant implications for the development of drugs that can cross the blood-testis barrier. Potential expression differences between humans and rodents highlighted here suggest rodents may be inappropriate for some testicular disposition and toxicity studies.


Asunto(s)
Barrera Hematotesticular , Testículo , Animales , Humanos , Masculino , Barrera Hematotesticular/metabolismo , Testículo/metabolismo , Células de Sertoli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico
8.
Acta Pharm Sin B ; 13(1): 1-28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36815037

RESUMEN

The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.

9.
Drug Metab Dispos ; 51(2): 155-164, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36328481

RESUMEN

Alterations in hepatic transporters have been identified in precirrhotic chronic liver diseases (CLDs) that result in pharmacokinetic variations causing adverse drug reactions (ADRs). However, the effect of CLD on the expression of renal transporters is unknown despite the overwhelming evidence of kidney injury in CLD patients. This study determines the transcriptomic and proteomic expression profiles of renal drug transporters in patients with defined CLD etiology. Renal biopsies were obtained from patients with a history of CLD etiologies, including nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (ALD), viral hepatitis C (HCV), and combination ALD/HCV. A significant decrease in organic anion transporter (OAT)-3 was identified in NASH, ALD, HCV, and ALD/HCV (1.56 ± 1.10; 1.01 ± 0.46; 1.03 ± 0.43; 0.86 ± 0.57 pmol/mg protein) relative to control (2.77 ± 1.39 pmol/mg protein). Additionally, a decrease was shown for OAT4 in NASH (24.9 ± 5.69 pmol/mg protein) relative to control (43.8 ± 19.9 pmol/mg protein) and in urate transporter 1 (URAT1) for ALD and HCV (1.56 ± 0.15 and 1.65 ± 0.69 pmol/mg protein) relative to control (4.69 ± 4.59 pmol/mg protein). These decreases in organic anion transporter expression could result in increased and prolonged systemic exposure to drugs and possible toxicity. Renal transporter changes, in addition to hepatic transporter alterations, should be considered in dose adjustments for CLD patients for a more accurate disposition profile. It is important to consider a multiorgan approach to altered pharmacokinetics of drugs prescribed to CLD patients to prevent ADRs and improve patient outcomes. SIGNIFICANCE STATEMENT: Chronic liver diseases are known to elicit alterations in hepatic transporters that result in a disrupted pharmacokinetic profile for various drugs. However, it is unknown if there are alterations in renal transporters during chronic liver disease, despite strong indications of renal dysfunction associated with chronic liver disease. Identifying renal transporter expression changes in patients with chronic liver disease facilitates essential investigations on the multifaceted relationship between liver dysfunction and kidney physiology to offer dose adjustments and prevent adverse drug reactions.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hepatitis C , Hepatitis Viral Humana , Enfermedad del Hígado Graso no Alcohólico , Transportadores de Anión Orgánico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteómica , Etanol , Transportadores de Anión Orgánico/metabolismo
10.
J Pharmacol Exp Ther ; 382(3): 299-312, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779861

RESUMEN

The blood-testis barrier (BTB) is formed by a tight network of Sertoli cells (SCs) to limit the movement of reproductive toxicants from the blood into the male genital tract. Transporters expressed at the basal membranes of SCs also influence the disposition of drugs across the BTB. The reversible, nonhormonal contraceptive, H2-gamendazole (H2-GMZ), is an indazole carboxylic acid analog that accumulates over 10 times more in the testes compared with other organs. However, the mechanism(s) by which H2-GMZ circumvents the BTB are unknown. This study describes the physiologic characteristics of the carrier-mediated process(es) that permit H2-GMZ and other analogs to penetrate SCs. Uptake studies were performed using an immortalized human SC line (hT-SerC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Uptake of H2-GMZ and four analogs followed Michaelis-Menten transport kinetics (one analog exhibited poor penetration). H2-GMZ uptake was strongly inhibited by indomethacin, diclofenac, MK-571, and several analogs. Moreover, H2-GMZ uptake was stimulated by an acidic extracellular pH, reduced at basic pHs, and independent of extracellular Na+, K+, or Cl- levels, which are intrinsic characteristics of OATP-mediated transport. Therefore, the characteristics of H2-GMZ transport suggest that one or more OATPs may be involved. However, endogenous transporter expression in wild-type Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), and human embryonic kidney-293 (HEK-293) cells limited the utility of heterologous transporter expression to identify a specific OATP transporter. Altogether, characterization of the transporters involved in the flux of H2-GMZ provides insight into the selectivity of drug disposition across the human BTB to understand and overcome the pharmacokinetic and pharmacodynamic difficulties presented by this barrier. SIGNIFICANCE STATEMENT: Despite major advancements in female contraceptives, male alternatives, including vasectomy, condom usage, and physical withdrawal, are antiquated and the widespread availability of nonhormonal, reversible chemical contraceptives is nonexistent. Indazole carboxylic acid analogs such as H2-GMZ are promising new reversible, antispermatogenic drugs that are highly effective in rodents. This study characterizes the carrier-mediated processes that permit H2-GMZ and other drugs to enter Sertoli cells and the observations made here will guide the development of drugs that effectively circumvent the BTB.


Asunto(s)
Anticonceptivos Masculinos , Transportadores de Anión Orgánico , Animales , Barrera Hematotesticular , Células CHO , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/farmacología , Cromatografía Liquida , Anticonceptivos Masculinos/metabolismo , Anticonceptivos Masculinos/farmacología , Cricetinae , Cricetulus , Perros , Femenino , Células HEK293 , Humanos , Indazoles/farmacología , Masculino , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Anión Orgánico/metabolismo , Espectrometría de Masas en Tándem
11.
Toxicol Sci ; 189(1): 62-72, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35789393

RESUMEN

Inflammatory liver diseases, including nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (ALD), hepatitis C virus (HCV), and ALD/HCV, account for nearly 2 million deaths annually. Despite increasing evidence that liver dysfunction impacts renal physiology, there is limited supportive clinical information, due to limited diagnosis of liver disease, complexity in liver disease etiology, and inadequacy of renal function tests. Human kidney biopsies with liver and renal pathology were obtained from patients with nonalcoholic fatty liver disease (NAFLD), NASH, ALD, HCV, and ALD/HCV (n = 5-7). Each liver disease showed renal pathology with at least 50% interstitial nephritis, 50% interstitial fibrosis, and renal dysfunction by estimated glomerular filtration rate (NAFLD 36.7 ± 21.4; NASH 32.7 ± 15.0; ALD 16.0 ± 11.0; HCV 27.6 ± 11.5; ALD/HCV 21.0 ± 11.2 ml/min/1.73 m2). Transcriptomic analysis identified 55 genes with expression changes in a conserved direction in response to liver disease. Considering association with immune regulation, protein levels of alpha-2-macroglobulin, clusterin, complement C1q C chain (C1QC), CD163, and joining chain of multimeric IgA and IgM (JCHAIN) were further quantified by LC-MS/MS. C1QC demonstrated an increase in NASH, ALD, HCV, and ALD/HCV (42.9 ± 16.6; 38.8 ± 18.4; 39.0 ± 13.5; 40.1 ± 20.1 pmol/mg protein) relative to control (19.2 ± 10.4 pmol/mg protein; p ≤ 0.08). Renal expression changes identified in inflammatory liver diseases with interstitial pathology suggest the pathogenesis of liver associated renal dysfunction. This unique cohort overcomes diagnostic discrepancies and sample availability to provide insight for mechanistic investigations on the impact of liver dysfunction on renal physiology.


Asunto(s)
Hepatitis C , Enfermedades Renales , Hepatopatías Alcohólicas , Enfermedad del Hígado Graso no Alcohólico , Cromatografía Liquida , Hepatitis C/complicaciones , Humanos , Riñón/patología , Riñón/fisiología , Enfermedades Renales/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Espectrometría de Masas en Tándem
12.
Clin Transl Sci ; 15(7): 1599-1605, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35505633

RESUMEN

The ongoing pandemic of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and subsequently, coronavirus disease 2019 (COVID-19), has led to the deaths of over 6.1 million people and sparked a greater interest in virology to expedite the development process for antivirals. The US Food and Drug Administration (FDA) granted emergency use authorization for three antivirals: remdesivir, molnupiravir, and nirmatrelvir. Remdesivir and molnupiravir are nucleoside analogs that undergo biotransformation to form active metabolites that incorporate into new viral RNA to stall replication. Unlike remdesivir or molnupiravir, nirmatrelvir is a protease inhibitor that covalently binds to the SARS-CoV-2 3C-like protease to interrupt the viral replication cycle. A recent study identified that remdesivir and the active metabolite of molnupiravir, EIDD-1931, are substrates of equilibrative nucleoside transporters 1 and 2 (ENT1 and 2). Despite the ubiquitous expression of the ENTs, the preclinical efficacy of remdesivir and molnupiravir is not reflected in wide-scale SARS-CoV-2 clinical trials. Interestingly, downregulation of ENT1 and ENT2 expression has been shown in lung epithelial and endothelial cells in response to hypoxia and acute lung injury, although it has not been directly studied in patients with COVID-19. It is possible that the poor efficacy of remdesivir and molnupiravir in these patients may be partially attributed to the repression of ENTs in the lungs, but further studies are warranted. This study investigated the interaction between nirmatrelvir and the ENTs and found that it was a poor inhibitor of ENT-mediated [3 H]uridine uptake at 300 µM. Unlike for remdesivir or EIDD-1931, ENT activity is unlikely to be a factor for nirmatrelvir disposition in humans; however, whether this contributes to the similar in vitro and clinical efficacy will require further mechanistic studies.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Antivirales/uso terapéutico , Células Endoteliales , Humanos , Lactamas , Leucina , Nitrilos , Prolina , SARS-CoV-2 , Estados Unidos/epidemiología
13.
Drug Metab Dispos ; 50(6): 770-780, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35307651

RESUMEN

The blood-testis barrier (BTB) is formed by basal tight junctions between adjacent Sertoli cells (SCs) of the seminiferous tubules and acts as a physical barrier to protect developing germ cells in the adluminal compartment from reproductive toxicants. Xenobiotics, including antivirals, male contraceptives, and cancer chemotherapeutics, are known to cross the BTB, although the mechanisms that permit barrier circumvention are generally unknown. This study used immunohistological staining of human testicular tissue to determine the site of expression for xenobiotic transporters that facilitate transport across the BTB. Organic anion transporter (OAT) 1, OAT2, and organic cation transporter, novel (OCTN) 1 primarily localized to the basal membrane of SCs, whereas OCTN2, multidrug resistance protein (MRP) 3, MRP6, and MRP7 localized to SC basal membranes and peritubular myoid cells (PMCs) surrounding the seminiferous tubules. Concentrative nucleoside transporter (CNT) 2 localized to Leydig cells (LCs), PMCs, and SC apicolateral membranes. Organic cation transporter (OCT) 1, OCT2, and OCT3 mostly localized to PMCs and LCs, although there was minor staining in developing germ cells for OCT3. Organic anion transporting polypeptide (OATP) 1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, and OATP3A1-v2 localized to SC basal membranes with diffuse staining for some transporters. Notably, OATP1C1 and OATP4A1 primarily localized to LCs. Positive staining for multidrug and toxin extrusion protein (MATE) 1 was only observed throughout the adluminal compartment. Definitive staining for CNT1, OAT3, MATE2, and OATP6A1 was not observed. The location of these transporters is consistent with their involvement in the movement of xenobiotics across the BTB. Altogether, the localization of these transporters provides insight into the mechanisms of drug disposition across the BTB and will be useful in developing tools to overcome the pharmacokinetic and pharmacodynamic difficulties presented by the BTB. SIGNIFICANCE STATEMENT: Although the total mRNA and protein expression of drug transporters in the testes has been explored, the localization of many transporters at the blood-testis barrier (BTB) has not been determined. This study applied immunohistological staining in human testicular tissues to identify the cellular localization of drug transporters in the testes. The observations made in this study have implications for the development of drugs that can effectively use transporters expressed at the basal membranes of Sertoli cells to bypass the BTB.


Asunto(s)
Barrera Hematotesticular , Transportador 1 de Catión Orgánico , Xenobióticos , Barrera Hematotesticular/metabolismo , Cationes/metabolismo , Humanos , Masculino , Transportador 1 de Catión Orgánico/metabolismo , Xenobióticos/metabolismo
15.
Antioxidants (Basel) ; 11(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35204102

RESUMEN

Paraquat (PQ) is an agrochemical known to cause pulmonary fibrosis. PQ-induced collagen deposition in the lung is thought to require enzymatic formation of PQ radicals, but the specific enzymes responsible for this bioactivation event in vivo have not been identified. We tested the hypothesis that lung P450 oxidoreductase (POR or CPR) is important in PQ-induced lung fibrosis in mice. A lung-Cpr-null mouse model was utilized, which undergoes doxycycline-induced, Cre recombinase-mediated deletion of the Por gene specifically in airway Club cells and alveolar type 2 cells in the lung. The lungs of lung-Cpr-null mice and their wild-type littermates were collected on day 15 after a single intraperitoneal injection of saline (control) or PQ (20 mg/kg). Lung tissue sections were stained with picrosirius red for detection of collagen fibrils. Fibrotic lung areas were found to be significantly smaller (1.6-fold for males and 1.4-fold for females) in PQ-treated lung-Cpr-null mice than in sex- and treatment-matched wild-type mice. The levels of collagen in lung tissue homogenate were also lower (1.4-2.3-fold; p < 0.05) in PQ-treated lung-Cpr-null mice compared to PQ-treated wild-type mice. In contrast, plasma PQ toxicokinetic profiles were not different between sex-matched wild-type and lung-Cpr-null mice. Taken together, these results indicate that lung POR plays an important role in PQ-induced pulmonary fibrosis.

16.
Drug Metab Dispos ; 50(4): 492-499, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34531312

RESUMEN

Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD) and is diagnosed by a liver biopsy. Because of the invasiveness of a biopsy, the majority of patients with NASH are undiagnosed. Additionally, the prevalence of NAFLD and NASH creates the need for a simple screening method to differentiate patients with NAFLD versus NASH. Noninvasive strategies for diagnosing NAFLD versus NASH have been developed, typically relying on imaging techniques and endogenous biomarker panels. However, each technique has limitations, and none can accurately predict the associated functional impairment of drug metabolism and disposition. The function of several drug-metabolizing enzymes and drug transporters has been described in NASH that impacts drug pharmacokinetics. The aim of this review is to give an overview of the existing noninvasive strategies to diagnose NASH and to propose a novel strategy based on altered pharmacokinetics using an exogenous biomarker whose disposition and elimination pathways are directly impacted by disease progression. Altered disposition of safe and relatively inert exogenous compounds may provide the sensitivity and specificity needed to differentiate patients with NAFLD and NASH to facilitate a direct indication of hepatic impairment on drug metabolism and prevent subsequent adverse drug reactions. SIGNIFICANCE STATEMENT: This review provides an overview of the main noninvasive techniques (imaging and panels of biomarkers) used to diagnose NAFLD and NASH along with a biopsy. Pharmacokinetic changes have been identified in NASH, and this review proposes a new approach to predict NASH and the related risk of adverse drug reactions based on the assessment of drug elimination disruption using exogenous biomarkers.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Enfermedad del Hígado Graso no Alcohólico , Biomarcadores/metabolismo , Biopsia , Humanos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología
17.
Drug Metab Dispos ; 50(10): 1389-1395, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34921099

RESUMEN

Ochratoxin A (OTA) is an abundant mycotoxin, yet the toxicological impact of its disposition is not well studied. OTA is an organic anion transporter (OAT) substrate primarily excreted in urine despite a long half-life and extensive protein binding. Altered renal transporter expression during disease, including nonalcoholic steatohepatitis (NASH), may influence response to OTA exposure, but the impact of NASH on OTA toxicokinetics, tissue distribution, and associated nephrotoxicity is unknown. By inducing NASH in fast food-dieted/thioacetamide-exposed mice, we evaluated the effect of NASH on a bolus OTA exposure (12.5 mg/kg by mouth) after 3 days. NASH mice presented with less gross toxicity (44% less body weight loss), and kidney and liver weights of NASH mice were 11% and 24% higher, respectively, than healthy mice. Organ and body weight changes coincided with reduced renal proximal tubule cells vacuolation, degeneration, and necrosis, though no OTA-induced hepatic lesions were found. OTA systemic exposure in NASH mice increased modestly from 5.65 ± 1.10 to 7.95 ± 0.61 mg*h/ml per kg BW, and renal excretion increased robustly from 5.55% ± 0.37% to 13.11% ± 3.10%, relative to healthy mice. Total urinary excretion of OTA increased from 24.41 ± 1.74 to 40.07 ± 9.19 µg in NASH mice, and kidney-bound OTA decreased by ∼30%. Renal OAT isoform expression (OAT1-5) in NASH mice decreased by ∼50% with reduced OTA uptake by proximal convoluted cells. These data suggest that NASH-induced OAT transporter reductions attenuate renal secretion and reabsorption of OTA, increasing OTA urinary excretion and reducing renal exposure, thereby reducing nephrotoxicity in NASH. SIGNIFICANCE STATEMENT: These data suggest a disease-mediated transporter mechanism of altered tissue-specific toxicity after mycotoxin exposure, despite minimal systemic changes to ochratoxin A (OTA) concentrations. Further studies are warranted to evaluate the clinical relevance of this functional model and the potential effect of human nonalcoholic steatohepatitis on OTA and other organic anion substrate toxicity.


Asunto(s)
Micotoxinas , Enfermedad del Hígado Graso no Alcohólico , Transportadores de Anión Orgánico , Animales , Modelos Animales de Enfermedad , Humanos , Riñón/metabolismo , Ratones , Micotoxinas/metabolismo , Micotoxinas/toxicidad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ocratoxinas , Transportadores de Anión Orgánico/metabolismo , Isoformas de Proteínas/metabolismo , Tioacetamida/metabolismo
18.
Mol Pharmacol ; 100(6): 548-557, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34503974

RESUMEN

Equilibrative nucleoside transporters (ENTs) are present at the blood-testis barrier (BTB), where they can facilitate antiviral drug disposition to eliminate a sanctuary site for viruses detectable in semen. The purpose of this study was to investigate ENT-drug interactions with three nucleoside analogs, remdesivir, molnupiravir, and molnupiravir's active metabolite, ß-d-N4-hydroxycytidine (EIDD-1931), and four non-nucleoside molecules repurposed as antivirals for coronavirus disease 2019 (COVID-19). The study used three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors and Bayesian machine learning models to identify potential interactions with these transporters. In vitro transport experiments demonstrated that remdesivir was the most potent inhibitor of ENT-mediated [3H]uridine uptake (ENT1 IC50: 39 µM; ENT2 IC50: 77 µM), followed by EIDD-1931 (ENT1 IC50: 259 µM; ENT2 IC50: 467 µM), whereas molnupiravir was a modest inhibitor (ENT1 IC50: 701 µM; ENT2 IC50: 851 µM). Other proposed antivirals failed to inhibit ENT-mediated [3H]uridine uptake below 1 mM. Remdesivir accumulation decreased in the presence of 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) by 30% in ENT1 cells (P = 0.0248) and 27% in ENT2 cells (P = 0.0054). EIDD-1931 accumulation decreased in the presence of NBMPR by 77% in ENT1 cells (P = 0.0463) and by 64% in ENT2 cells (P = 0.0132), which supported computational predictions that both are ENT substrates that may be important for efficacy against COVID-19. NBMPR failed to decrease molnupiravir uptake, suggesting that ENT interaction is likely inhibitory. Our combined computational and in vitro data can be used to identify additional ENT-drug interactions to improve our understanding of drugs that can circumvent the BTB. SIGNIFICANCE STATEMENT: This study identified remdesivir and EIDD-1931 as substrates of equilibrative nucleoside transporters 1 and 2. This provides a potential mechanism for uptake of these drugs into cells and may be important for antiviral potential in the testes and other tissues expressing these transporters.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/metabolismo , Citidina/análogos & derivados , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , SARS-CoV-2/metabolismo , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/metabolismo , Alanina/administración & dosificación , Alanina/metabolismo , Antivirales/administración & dosificación , COVID-19/metabolismo , Citidina/administración & dosificación , Citidina/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas/fisiología , Células HeLa , Humanos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
19.
Pharmacol Res Perspect ; 9(4): e00831, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34288585

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common cancer in children and adolescents. Although the 5-year survival rate is high, some patients respond poorly to chemotherapy or have recurrence in locations such as the testis. The blood-testis barrier (BTB) can prevent complete eradication by limiting chemotherapeutic access and lead to testicular relapse unless a chemotherapeutic is a substrate of drug transporters present at this barrier. Equilibrative nucleoside transporter (ENT) 1 and ENT2 facilitate the movement of substrates across the BTB. Clofarabine is a nucleoside analog used to treat relapsed or refractory ALL. This study investigated the role of ENTs in the testicular disposition of clofarabine. Pharmacological inhibition of the ENTs by 6-nitrobenzylthioinosine (NBMPR) was used to determine ENT contribution to clofarabine transport in primary rat Sertoli cells, in human Sertoli cells, and across the rat BTB. The presence of NBMPR decreased clofarabine uptake by 40% in primary rat Sertoli cells (p = .0329) and by 53% in a human Sertoli cell line (p = .0899). Rats treated with 10 mg/kg intraperitoneal (IP) injection of the NBMPR prodrug, 6-nitrobenzylthioinosine 5'-monophosphate (NBMPR-P), or vehicle, followed by an intravenous (IV) bolus 10 mg/kg dose of clofarabine, showed a trend toward a lower testis concentration of clofarabine than vehicle (1.81 ± 0.59 vs. 2.65 ± 0.92 ng/mg tissue; p = .1160). This suggests that ENTs could be important for clofarabine disposition. Clofarabine may be capable of crossing the human BTB, and its potential use as a first-line treatment to avoid testicular relapse should be considered.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacocinética , Clofarabina/farmacocinética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Testículo/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Tranportador Equilibrativo 1 de Nucleósido/antagonistas & inhibidores , Transportador Equilibrativo 2 de Nucleósido/antagonistas & inhibidores , Humanos , Lamivudine/sangre , Lamivudine/farmacocinética , Lamivudine/farmacología , Masculino , Ratas Sprague-Dawley , Telomerasa/genética , Tioinosina/análogos & derivados , Tioinosina/sangre , Tioinosina/farmacocinética , Tioinosina/farmacología , Tionucleótidos/sangre , Tionucleótidos/farmacocinética , Tionucleótidos/farmacología
20.
Drug Metab Dispos ; 49(7): 479-489, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33980604

RESUMEN

Equilibrativenucleoside transporters (ENTs) participate in the pharmacokinetics and disposition of nucleoside analog drugs. Understanding drug interactions with the ENTs may inform and facilitate the development of new drugs, including chemotherapeutics and antivirals that require access to sanctuary sites such as the male genital tract. This study created three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors using Kt and IC50 data curated from the literature. Substrate pharmacophores for ENT1 and ENT2 are distinct, with partial overlap of hydrogen bond donors, whereas the inhibitor pharmacophores predominantly feature hydrogen bond acceptors. Mizoribine and ribavirin mapped to the ENT1 substrate pharmacophore and proved to be substrates of the ENTs. The presence of the ENT-specific inhibitor 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) decreased mizoribine accumulation in ENT1 and ENT2 cells (ENT1, ∼70% decrease, P = 0.0046; ENT2, ∼50% decrease, P = 0.0012). NBMPR also decreased ribavirin accumulation in ENT1 and ENT2 cells (ENT1: ∼50% decrease, P = 0.0498; ENT2: ∼30% decrease, P = 0.0125). Darunavir mapped to the ENT1 inhibitor pharmacophore and NBMPR did not significantly influence darunavir accumulation in either ENT1 or ENT2 cells (ENT1: P = 0.28; ENT2: P = 0.53), indicating that darunavir's interaction with the ENTs is limited to inhibition. These computational and in vitro models can inform compound selection in the drug discovery and development process, thereby reducing time and expense of identification and optimization of ENT-interacting compounds. SIGNIFICANCE STATEMENT: This study developed computational models of human equilibrative nucleoside transporters (ENTs) to predict drug interactions and validated these models with two compounds in vitro. Identification and prediction of ENT1 and ENT2 substrates allows for the determination of drugs that can penetrate tissues expressing these transporters.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Nucleósidos/farmacocinética , Darunavir/farmacocinética , Interacciones Farmacológicas , Tranportador Equilibrativo 1 de Nucleósido/antagonistas & inhibidores , Células HeLa , Humanos , Nucleósidos/análogos & derivados , Ribavirina/farmacocinética , Ribonucleósidos/farmacocinética , Tioinosina/análogos & derivados , Tioinosina/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...