Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(1): 013803, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478429

RESUMEN

We study the interplay between intrinsic spin-orbit coupling and nonlinear photon-photon interactions in a nonparaxial, elliptically polarized fluid of light propagating in a bulk Kerr medium. We find that in situations where the nonlinear interactions induce birefringence, i.e., a polarization-dependent nonlinear refractive index, their interplay with spin-orbit coupling results in an interference between the two polarization components of the fluid traveling at different wave vectors, which entails the breaking of translation symmetry along the propagation direction. This phenomenon leads to a Floquet band structure in the Bogoliubov spectrum of the fluid, and to characteristic oscillations of its intensity correlations. We characterize these oscillations in detail and point out their exponential growth at large propagation distances, revealing the presence of parametric resonances.

2.
Phys Rev Lett ; 129(10): 100602, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36112447

RESUMEN

We report on the observation of a prethermal state in a nonequilibrium, two-dimensional fluid of light. Direct measurements of the first order coherence function of the fluid reveal the dynamical emergence of algebraic correlations, a quasi-steady-state with properties close to those of thermal superfluids. By a controlled increase of the fluctuations, we observe a crossover from algebraic to short-range (exponential) correlations. We interpret this phenomenon as a nonequilibrium precursor of the Kosterlitz-Thouless transition.

3.
Phys Rev Lett ; 123(4): 043901, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31491246

RESUMEN

We show that optical beams propagating in transversally disordered materials exhibit a spin Hall effect and a spin-to-orbital conversion of angular momentum as they deviate from paraxiality. We theoretically describe these phenomena on the basis of the microscopic statistical approach to light propagation in random media, and show that they can be detected via polarimetric measurements under realistic experimental conditions.

4.
Nat Commun ; 9(1): 1382, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643368

RESUMEN

Anderson localization, the absence of diffusion in disordered media, draws its origins from the destructive interference between multiple scattering paths. The localization properties of disordered systems are expected to be dramatically sensitive to their symmetries. So far, this question has been little explored experimentally. Here we investigate the realization of an artificial gauge field in a synthetic (temporal) dimension of a disordered, periodically driven quantum system. Tuning the strength of this gauge field allows us to control the parity-time symmetry properties of the system, which we probe through the experimental observation of three symmetry-sensitive signatures of localization. The first two are the coherent backscattering, marker of weak localization, and the recently predicted coherent forward scattering, genuine interferential signature of Anderson localization. The third is the direct measurement of the ß(g) scaling function in two different symmetry classes, allowing to demonstrate its universality and the one-parameter scaling hypothesis.

5.
Phys Rev Lett ; 118(18): 184101, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28524683

RESUMEN

We report on the observation of the coherent enhancement of the return probability ["enhanced return to the origin" (ERO)] in a periodically kicked cold-atom gas. By submitting an atomic wave packet to a pulsed, periodically shifted, laser standing wave, we induce an oscillation of ERO in time that is explained in terms of a periodic, reversible dephasing in the weak-localization interference sequences responsible for ERO. Monitoring the temporal decay of ERO, we exploit its quantum-coherent nature to quantify the decoherence rate of the atomic system.

6.
J Phys Condens Matter ; 29(2): 024002, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-27841991

RESUMEN

The self-consistent theory of localization is generalized to account for a weak quadratic nonlinear potential in the wave equation. For spreading wave packets, the theory predicts the destruction of Anderson localization by the nonlinearity and its replacement by algebraic subdiffusion, while classical diffusion remains unaffected. In 3D, this leads to the emergence of a subdiffusion-diffusion transition in place of the Anderson transition. The accuracy and the limitations of the theory are discussed.

7.
Phys Rev Lett ; 112(17): 170603, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24836228

RESUMEN

In disordered systems, our present understanding of the Anderson transition is hampered by the possible presence of interactions between particles. We demonstrate that in boson gases, even weak interactions deeply alter the very nature of the Anderson transition. While there still exists a critical point in the system, below that point a novel phase appears, displaying a new critical exponent, subdiffusive transport, and a breakdown of the one-parameter scaling description of Anderson localization.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(2 Pt 1): 021114, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21928956

RESUMEN

Starting from first principles, we formulate a theory of wave-packet propagation in a nonlinear, disordered medium of any dimension, through the derivation of a Fokker-Planck transport equation. Our theory is based on a diagrammatic expansion of the wave packet's density, and is supported by a heuristic picture that involves a Boltzmann equation with an effective, external potential. Our approach also confirms results obtained in previous work for two-dimensional, nonlinear disordered media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA