Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Integr Comp Biol ; 62(6): 1838-1848, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-35781565

RESUMEN

Connectivity among wildlife populations facilitates exchange of genetic material between groups. Changes to historical connectivity patterns resulting from anthropogenic activities can therefore have negative consequences for genetic diversity, particularly for small or isolated populations. DNA obtained from museum specimens can enable direct comparison of temporal changes in connectivity among populations, which can aid in conservation planning and contribute to the understanding of population declines. However, museum DNA can be degraded and only available in low quantities, rendering it challenging for use in population genomic analyses. Applications of genomic methodologies such as targeted sequencing address this issue by enabling capture of shared variable sites, increasing quantity and quality of recovered genomic information. We used targeted sequencing of ultra-conserved Elements (UCEs) to evaluate potential changes in connectivity and genetic diversity of roseate terns (Sterna dougallii) with a breeding distribution in the northwestern Atlantic and the Caribbean. Both populations experienced range contractions and population declines due to anthropogenic activity in the 20th century, which has the potential to alter historical connectivity regimes. Instead, we found that the two populations were differentiated historically as well as contemporaneously, with little evidence of migration between them for either time period. We also found no evidence for temporal changes in genetic diversity, although these interpretations may have been limited due to sequencing artifacts caused by the degraded nature of the museum samples. Population structuring in migratory seabirds is typically reflective of low rates of divergence and high connectivity among geographically segregated subpopulations. Our contrasting results suggest the potential presence of ecological mechanisms driving population differentiation, and highlight the value of targeted sequencing on DNA derived from museum specimens to uncover long-term patterns of genetic differentiation in wildlife populations.


Asunto(s)
Especies en Peligro de Extinción , Museos , Animales , Genómica/métodos , ADN/genética , Aves/genética , Variación Genética
3.
Syst Biol ; 70(5): 976-996, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-33512506

RESUMEN

The diversification of modern birds has been shaped by a number of radiations. Rapid diversification events make reconstructing the evolutionary relationships among taxa challenging due to the convoluted effects of incomplete lineage sorting (ILS) and introgression. Phylogenomic data sets have the potential to detect patterns of phylogenetic incongruence, and to address their causes. However, the footprints of ILS and introgression on sequence data can vary between different phylogenomic markers at different phylogenetic scales depending on factors such as their evolutionary rates or their selection pressures. We show that combining phylogenomic markers that evolve at different rates, such as paired-end double-digest restriction site-associated DNA (PE-ddRAD) and ultraconserved elements (UCEs), allows a comprehensive exploration of the causes of phylogenetic discordance associated with short internodes at different timescales. We used thousands of UCE and PE-ddRAD markers to produce the first well-resolved phylogeny of shearwaters, a group of medium-sized pelagic seabirds that are among the most phylogenetically controversial and endangered bird groups. We found that phylogenomic conflict was mainly derived from high levels of ILS due to rapid speciation events. We also documented a case of introgression, despite the high philopatry of shearwaters to their breeding sites, which typically limits gene flow. We integrated state-of-the-art concatenated and coalescent-based approaches to expand on previous comparisons of UCE and RAD-Seq data sets for phylogenetics, divergence time estimation, and inference of introgression, and we propose a strategy to optimize RAD-Seq data for phylogenetic analyses. Our results highlight the usefulness of combining phylogenomic markers evolving at different rates to understand the causes of phylogenetic discordance at different timescales. [Aves; incomplete lineage sorting; introgression; PE-ddRAD-Seq; phylogenomics; radiations; shearwaters; UCEs.].


Asunto(s)
Evolución Biológica , Aves , Animales , Secuencia de Bases , Aves/genética , Filogenia , Análisis de Secuencia de ADN
4.
Science ; 370(6522): 1343-1348, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33303617

RESUMEN

The tropics are the source of most biodiversity yet inadequate sampling obscures answers to fundamental questions about how this diversity evolves. We leveraged samples assembled over decades of fieldwork to study diversification of the largest tropical bird radiation, the suboscine passerines. Our phylogeny, estimated using data from 2389 genomic regions in 1940 individuals of 1283 species, reveals that peak suboscine species diversity in the Neotropics is not associated with high recent speciation rates but rather with the gradual accumulation of species over time. Paradoxically, the highest speciation rates are in lineages from regions with low species diversity, which are generally cold, dry, unstable environments. Our results reveal a model in which species are forming faster in environmental extremes but have accumulated in moderate environments to form tropical biodiversity hotspots.


Asunto(s)
Biodiversidad , Aves/clasificación , Aves/genética , Animales , Especiación Genética , Filogenia
5.
Zootaxa ; 4817(1): zootaxa.4817.1.1, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-33055681

RESUMEN

Populations in the Rufous Antpitta (Grallaria rufula) complex occupy humid montane forests of the Andes from northern Colombia and adjacent Venezuela to central Bolivia. Their tawny to cinnamon-colored plumages are generally uniform, featuring subtle variation in hue and saturation across this range. In contrast to their conservative plumage, substantial vocal differences occur among geographically isolated or parapatric populations. Working within the framework of a comprehensive molecular phylogeny, we reexamined species limits in the G. rufula complex, basing taxonomic recommendations on diagnostic differences in vocalizations and considering identifiable differences in plumage where pertinent. We identified 16 populations for species designation, including seven populations previously described as subspecies and, remarkably, six new species described herein. Within one of these species, we identified less robust vocal differences between populations that we designate as subspecies. Geographic variation exists within another species, but its critical evaluation requires additional material. Taxonomic revisions of groups consisting of cryptic species, like the Grallaria rufula complex, are imperative for their conservation. Rather than widespread species as currently defined, these complexes can comprise many range-restricted taxa at higher risk of extinction given the continuing human pressures on their habitats.


Asunto(s)
Passeriformes , Animales , Filogenia
6.
Proc Natl Acad Sci U S A ; 116(16): 7916-7925, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30936315

RESUMEN

Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.


Asunto(s)
Passeriformes , Animales , Australia , Biodiversidad , Evolución Biológica , Fósiles , Nueva Zelanda , Passeriformes/clasificación , Passeriformes/genética , Passeriformes/fisiología , Filogenia
7.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(2): 256-263, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30043666

RESUMEN

Mitochondrial genetic markers have been extensively used to study the phylogenetics and phylogeography of many birds, including seabirds of the order Procellariiformes. Evidence suggests that part of the mitochondrial genome of Procellariiformes, especially albatrosses, is duplicated, but no DNA fragment covering the entire duplication has been sequenced. We sequenced the complete mitochondrial genome of a non-albatross species of Procellariiformes, Puffinus lherminieri (Audubon's shearwater) using the long-read MinION (ONT) technology. Two mitogenomes were assembled from the same individual, differing by 52 SNPs and in length. The shorter was 19 kb long while the longer was 21 kb, due to the presence of two identical copies of nad6, three tRNA, and two dissimilar copies of the control region (CR). Contrary to albatrosses, cob was not duplicated. We further detected a complex repeated region of undetermined length between the CR and 12S. Long-read sequencing suggests heteroplasmy and a novel arrangement within the duplicated region, indicating a complex evolution of the mitogenome in Procellariiformes.


Asunto(s)
Aves/genética , ADN Mitocondrial/genética , Duplicación de Gen , Animales , Proteínas Aviares/genética , Citocromos b/genética , Variaciones en el Número de Copia de ADN , Polimorfismo de Nucleótido Simple , ARN de Transferencia/genética
8.
Mol Phylogenet Evol ; 128: 162-171, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30017823

RESUMEN

Phylogenetic relationships among swifts of the morphologically conservative genus Chaetura were studied using mitochondrial and nuclear DNA sequences. Taxon sampling included all species and 21 of 30 taxa (species and subspecies) within Chaetura. Our results indicate that Chaetura is monophyletic and support the division of the genus into the two subgenera previously identified using plumage characters. However, our genetic data, when considered in combination with phenotypic data, appear to be at odds with the current classification of some species of Chaetura. We recommend that C. viridipennis, currently generally treated as specifically distinct from C. chapmani, be returned to its former status as C. chapmani viridipennis, and that C. andrei, now generally regarded as synonymous with C. vauxi aphanes, again be recognized as a valid species. Widespread Neotropical species C. spinicaudus is paraphyletic with respect to more range-restricted species C. fumosa, C. egregia, and C. martinica. Geographically structured genetic variation within some other species of Chaetura, especially notable in C. cinereiventris, suggests that future study may lead to recognition of additional species in this genus. Biogeographic analysis indicated that Chaetura originated in South America and identified several dispersal events to Middle and North America following the formation of the Isthmus of Panama.


Asunto(s)
Aves/clasificación , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Mitocondrias/genética , América del Norte , Panamá , Filogenia , Estaciones del Año , América del Sur , Especificidad de la Especie
9.
Sci Rep ; 8(1): 6767, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695747

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
Sci Rep ; 8(1): 3713, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29487373

RESUMEN

Recent reviews identified the reliance on fecal or cloacal samples as a significant limitation hindering our understanding of the avian gastrointestinal (gut) microbiota and its function. We investigated the microbiota of the esophagus, duodenum, cecum, and colon of a wild urban population of Canada goose (Branta canadensis). From a population sample of 30 individuals, we sequenced the V4 region of the 16S SSU rRNA on an Illumina MiSeq and obtained 8,628,751 sequences with a median of 76,529 per sample. These sequences were assigned to 420 bacterial OTUs and a single archaeon. Firmicutes, Proteobacteria, and Bacteroidetes accounted for 90% of all sequences. Microbiotas from the four gut regions differed significantly in their richness, composition, and variability among individuals. Microbial communities of the esophagus were the most distinctive whereas those of the colon were the least distinctive, reflecting the physical downstream mixing of regional microbiotas. The downstream mixing of regional microbiotas was also responsible for the majority of observed co-occurrence patterns among microbial families. Our results indicate that fecal and cloacal samples inadequately represent the complex patterns of richness, composition, and variability of the gut microbiota and obscure patterns of co-occurrence of microbial lineages.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Gansos/microbiología , Animales , Animales Salvajes/microbiología , Bacteroidetes/genética , Heces/microbiología , Firmicutes/genética , Microbioma Gastrointestinal/genética , Proteobacteria/genética , ARN Ribosómico 16S/genética
11.
Int J Parasitol ; 47(6): 347-356, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28192124

RESUMEN

Host-parasite coevolutionary histories can differ among multiple groups of parasites associated with the same group of hosts. For example, parasitic wing and body lice (Insecta: Phthiraptera) of New World pigeons and doves (Aves: Columbidae) differ in their cophylogenetic patterns, with body lice exhibiting higher phylogenetic congruence with their hosts than wing lice. In this study, we focus on the wing and body lice of Australian phabine pigeons and doves to determine whether the patterns in New World pigeons and doves are consistent with those of pigeons and doves from other regions. Using molecular sequence data for most phabine species and their lice, we estimated phylogenetic trees for all three groups (pigeons and doves, wing lice and body lice), and compared the phabine (host) tree with both parasite trees using multiple cophylogenetic methods. We found a pattern opposite to that found for New World pigeons and doves, with Australian wing lice showing congruence with their hosts, and body lice exhibiting a lack of congruence. There are no documented records of hippoboscid flies associated with Australian phabines, thus these lice may lack the opportunity to disperse among host species by attaching to hippoboscid flies (phoresis), which could explain these patterns. However, additional sampling for flies is needed to confirm this hypothesis. Large differences in body size among phabine pigeons and doves may also help to explain the congruence of the wing lice with their hosts. It may be more difficult for wing lice than body lice to switch among hosts that vary more dramatically in size. The results from this study highlight how host-parasite coevolutionary histories can vary by region, and how local factors can shape the relationship.


Asunto(s)
Enfermedades de las Aves/parasitología , Columbidae/genética , Infestaciones por Piojos/veterinaria , Phthiraptera/genética , Filogenia , Animales , Australia , Teorema de Bayes , Tamaño Corporal , Columbidae/clasificación , Columbidae/parasitología , Plumas/parasitología , Interacciones Huésped-Parásitos , Infestaciones por Piojos/parasitología , Funciones de Verosimilitud , Phthiraptera/clasificación , Alas de Animales/parasitología
12.
J Anim Ecol ; 86(2): 405-413, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28004849

RESUMEN

Because a broad spectrum of resource use allows species to persist in a wide range of habitat types, and thus permits them to occupy large geographical areas, and because broadly distributed species have access to more diverse resource bases, the resource breadth hypothesis posits that the diversity of resources used by organisms should be positively related with the extent of their geographic ranges. We investigated isotopic niche width in a small radiation of South American birds in the genus Cinclodes. We analysed feathers of 12 species of Cinclodes to test the isotopic version of the resource breadth hypothesis and to examine the correlation between isotopic niche breadth and morphology. We found a positive correlation between the widths of hydrogen and oxygen isotopic niches (which estimate breadth of elevational range) and widths of the carbon and nitrogen isotopic niches (which estimates the diversity of resources consumed, and hence of habitats used). We also found a positive correlation between broad isotopic niches and wing morphology. Our study not only supports the resource breadth hypothesis but it also highlights the usefulness of stable isotope analyses as tools in the exploration of ecological niches. It is an example of a macroecological application of stable isotopes. It also illustrates the importance of scientific collections in ecological studies.


Asunto(s)
Ecosistema , Passeriformes/anatomía & histología , Passeriformes/fisiología , Animales , Isótopos de Carbono/análisis , Deuterio/análisis , Plumas/química , América del Sur
13.
Mol Phylogenet Evol ; 103: 41-54, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27369453

RESUMEN

Species complexes that have undergone recent radiations are often characterized by extensive allele sharing due to recent ancestry and (or) introgressive hybridization. This can result in discordant evolutionary histories of genes and heterogeneous genomes, making delineating species limits difficult. Here we examine the phylogenetic relationships among a complex group of birds, the white-headed gulls (Aves: Laridae), which offer a unique window into the speciation process due to their recent evolutionary history and propensity to hybridize. Relationships were examined among 17 species (61 populations) using a multilocus approach, including mitochondrial and nuclear intron DNA sequences and microsatellite genotype information. Analyses of microsatellite and intron data resulted in some species-based groupings, although most species were not represented by a single cluster. Considerable allele and haplotype sharing among white-headed gull species was observed; no locus contained a species-specific clade. Despite this, our multilocus approach provided better resolution among some species than previous studies. Interestingly, most clades appear to correspond to geographic locality: our BEAST analysis recovered strong support for a northern European/Icelandic clade, a southern European/Russian clade, and a western North American/canus clade, with weak evidence for a high latitude clade spanning North America and northwestern Europe. This geographical structuring is concordant with behavioral observations of pervasive hybridization in areas of secondary contact. The extent of allele and haplotype sharing indicates that ecological and sexual selection are likely not strong enough to complete reproductive isolation within several species in the white-headed gull complex. This suggests that just a few genes are driving the speciation process.


Asunto(s)
Charadriiformes/clasificación , Hibridación Genética , Alelos , Animales , Evolución Biológica , Charadriiformes/genética , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , ADN Mitocondrial/clasificación , ADN Mitocondrial/genética , Variación Genética , Haplotipos , Intrones , Repeticiones de Microsatélite/genética , Fosfopiruvato Hidratasa/genética , Filogenia , Análisis de Componente Principal , Análisis de Secuencia de ADN , Especificidad de la Especie
14.
Zootaxa ; 4067(5): 599, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-27395902

RESUMEN

A recent near-complete phylogeny of the avian family Furnariidae (Derryberry et al. 2011) found a number of discrepancies between the phylogeny and the then-current taxonomy of the group, and several changes were proposed to reconcile the taxonomy of the family with the phylogeny. Among these was the merging of the genus Schizoeaca Cabanis 1873 into Asthenes Reichenbach 1853 (Derryberry et al. 2010). This change has now been generally adopted. The Committee on Classification and Nomenclature (South America) of the American Ornithologists' Union (Remsen et al. 2015) passed a proposal to merge the genera in 2010, and recent global reference works (e.g., Dickinson & Christidis 2014) have likewise adopted the lumping of these genera.


Asunto(s)
Passeriformes/clasificación , Animales , Filogenia , América del Sur
15.
17.
Ecol Evol ; 2(6): 1278-95, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22833800

RESUMEN

We studied the influence of glacial oscillations on the genetic structure of seven species of white-headed gull that breed at high latitudes (Larus argentatus, L. canus, L. glaucescens, L. glaucoides, L. hyperboreus, L. schistisagus, and L. thayeri). We evaluated localities hypothesized as ice-free areas or glacial refugia in other Arctic vertebrates using molecular data from 11 microsatellite loci, mitochondrial DNA (mtDNA) control region, and six nuclear introns for 32 populations across the Holarctic. Moderate levels of genetic structure were observed for microsatellites (F(ST)= 0.129), introns (Φ(ST)= 0.185), and mtDNA control region (Φ(ST)= 0.461), with among-group variation maximized when populations were grouped based on subspecific classification. Two haplotype and at least two allele groups were observed across all loci. However, no haplotype/allele group was composed solely of individuals of a single species, a pattern consistent with recent divergence. Furthermore, northernmost populations were not well differentiated and among-group variation was maximized when L. argentatus and L. hyberboreus populations were grouped by locality rather than species, indicating recent hybridization. Four populations are located in putative Pleistocene glacial refugia and had larger τ estimates than the other 28 populations. However, we were unable to substantiate these putative refugia using coalescent theory, as all populations had genetic signatures of stability based on mtDNA. The extent of haplotype and allele sharing among Arctic white-headed gull species is noteworthy. Studies of other Arctic taxa have generally revealed species-specific clusters as well as genetic structure within species, usually correlated with geography. Aspects of white-headed gull behavioral biology, such as colonization ability and propensity to hybridize, as well as their recent evolutionary history, have likely played a large role in the limited genetic structure observed.

18.
PLoS One ; 6(11): e26357, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22073158

RESUMEN

The Black Rat (Rattus rattus) spread out of Asia to become one of the world's worst agricultural and urban pests, and a reservoir or vector of numerous zoonotic diseases, including the devastating plague. Despite the global scale and inestimable cost of their impacts on both human livelihoods and natural ecosystems, little is known of the global genetic diversity of Black Rats, the timing and directions of their historical dispersals, and the risks associated with contemporary movements. We surveyed mitochondrial DNA of Black Rats collected across their global range as a first step towards obtaining an historical genetic perspective on this socioeconomically important group of rodents. We found a strong phylogeographic pattern with well-differentiated lineages of Black Rats native to South Asia, the Himalayan region, southern Indochina, and northern Indochina to East Asia, and a diversification that probably commenced in the early Middle Pleistocene. We also identified two other currently recognised species of Rattus as potential derivatives of a paraphyletic R. rattus. Three of the four phylogenetic lineage units within R. rattus show clear genetic signatures of major population expansion in prehistoric times, and the distribution of particular haplogroups mirrors archaeologically and historically documented patterns of human dispersal and trade. Commensalism clearly arose multiple times in R. rattus and in widely separated geographic regions, and this may account for apparent regionalism in their associated pathogens. Our findings represent an important step towards deeper understanding the complex and influential relationship that has developed between Black Rats and humans, and invite a thorough re-examination of host-pathogen associations among Black Rats.


Asunto(s)
Vectores de Enfermedades , Geografía , Animales , Ecosistema , Filogenia , Ratas
19.
Evolution ; 65(10): 2973-86, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21967436

RESUMEN

Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents.


Asunto(s)
Evolución Biológica , Modelos Genéticos , Passeriformes/genética , Animales , Teorema de Bayes , Extinción Biológica , Passeriformes/anatomía & histología , Filogenia
20.
Mol Phylogenet Evol ; 58(3): 540-5, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21195784

RESUMEN

Neotropical lowland organisms often show marked population genetic structure, suggesting restricted migration among populations. However, most phylogeographic studies have focused on species inhabiting humid forest interior. Little attention has been devoted to the study of species with ecologies conducive to dispersal, such as those of more open and variable environments associated with watercourses. Using mtDNA sequences, we examined patterns of genetic variation in a widely distributed Neotropical songbird of aquatic environments, the Yellow-hooded Blackbird (Icteridae, Chrysomus icterocephalus). In contrast to many forest species, Yellow-hooded Blackbirds showed no detectable genetic structure across their range, which includes lowland populations on both sides of the Andes, much of northeastern South America, Amazonia, as well as a phenotypically distinct highland population in Colombia. A coalescent-based analysis of the species indicated that its effective population size has increased considerably, suggesting a range expansion. Our results support the hypothesis that species occurring in open habitats and tracking temporally dynamic environments should show increased dispersal propensities (hence gene flow) relative to species from closed and more stable environments. The phenotypic and behavioral variation among populations of our study species appears to have arisen recently and perhaps in the face of gene flow.


Asunto(s)
Flujo Génico , Variación Genética , Genética de Población , Pájaros Cantores/genética , Animales , ADN Mitocondrial/genética , Haplotipos , Filogeografía , Análisis de Secuencia de ADN , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...