Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cancer Res Clin Oncol ; 149(13): 12203-12225, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37432459

RESUMEN

PURPOSE: Triple-negative breast cancer (TNBC) is phenotypic of breast tumors lacking expression of the estrogen receptor (ER), the progesterone receptor (PgR), and the human epidermal growth factor receptor 2 (HER2). The paucity of well-defined molecular targets in TNBC, coupled with the increasing burden of breast cancer-related mortality, emphasizes the need to develop targeted diagnostics and therapeutics. While antibody-drug conjugates (ADCs) have emerged as revolutionary tools in the selective delivery of drugs to malignant cells, their widespread clinical use has been hampered by traditional strategies which often give rise to heterogeneous mixtures of ADC products. METHODS: Utilizing SNAP-tag technology as a cutting-edge site-specific conjugation method, a chondroitin sulfate proteoglycan 4 (CSPG4)-targeting ADC was engineered, encompassing a single-chain antibody fragment (scFv) conjugated to auristatin F (AURIF) via a click chemistry strategy. RESULTS: After showcasing the self-labeling potential of the SNAP-tag component, surface binding and internalization of the fluorescently labeled product were demonstrated on CSPG4-positive TNBC cell lines through confocal microscopy and flow cytometry. The cell-killing ability of the novel AURIF-based recombinant ADC was illustrated by the induction of a 50% reduction in cell viability at nanomolar to micromolar concentrations on target cell lines. CONCLUSION: This research underscores the applicability of SNAP-tag in the unambiguous generation of homogeneous and pharmaceutically relevant immunoconjugates that could potentially be instrumental in the management of a daunting disease like TNBC.


Asunto(s)
Inmunoconjugados , Anticuerpos de Cadena Única , Neoplasias de la Mama Triple Negativas , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/química , Neoplasias de la Mama Triple Negativas/patología , Anticuerpos de Cadena Única/farmacología , Línea Celular Tumoral , Proteínas de la Membrana , Proteoglicanos Tipo Condroitín Sulfato
2.
Health Sci Rep ; 2(2): e103, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30809593

RESUMEN

BACKGROUND: Cancer treatment in the 21st century has seen immense advances in optical imaging and immunotherapy. Significant progress has been made in the bioengineering and production of immunoconjugates to achieve the goal of specifically targeting tumors. DISCUSSION: In the 21st century, antibody drug conjugates (ADCs) have been the focus of immunotherapeutic strategies in cancer. ADCs combine the unique targeting of monoclonal antibodies (mAbs) with the cancer killing ability of cytotoxic drugs. However, due to random conjugation methods of drug to antibody, ADCs are associated with poor antigen specificity and low cytotoxicity, resulting in a drug to antibody ratio (DAR) >1. This means that the cytotoxic drugs in ADCs are conjugated randomly to antibodies, by cysteine or lysine residues. This generates heterogeneous ADC populations with 0 to 8 drugs per an antibody, each with distinct pharmacokinetic, efficacy, and toxicity properties. Additionally, heterogeneity is created not only by different antibody to ligand ratios but also by different sites of conjugation. Hence, much effort has been made to find and establish antibody conjugation strategies that enable us to better control stoichiometry and site-specificity. This includes utilizing protein self-labeling tags as fusion partners to the original protein. Site-specific conjugation is a significant characteristic of these engineered proteins. SNAP-tag is one such engineered self-labeling protein tag shown to have promising potential in cancer treatment. The SNAP-tag is fused to an antibody of choice and covalently reacts specifically in a 1:1 ratio with benzylguanine (BG) substrates, eg, fluorophores or photosensitizers, to target skin cancer. This makes SNAP-tag a versatile technique in optical imaging and photoimmunotherapy of skin cancer. CONCLUSION: SNAP-tag technology has the potential to contribute greatly to a broad range of molecular oncological applications because it combines efficacious tumor targeting, minimized local and systemic toxicity, and noninvasive assessment of diagnostic/prognostic molecular biomarkers of cancer.

3.
Oncotarget ; 10(8): 897-915, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30783518

RESUMEN

Patient-specific targeted therapy represents the holy grail of anti-cancer therapeutics, allowing potent tumor depletion without detrimental off-target toxicities. Disease-specific monoclonal antibodies have been employed to bind to oncogenic cell-surface receptors, representing the earliest form of immunotherapy. Targeted drug delivery was first achieved by means of antibody-drug conjugates, which exploit the differential expression of tumor-associated antigens as a guiding mechanism for the specific delivery of chemically-conjugated chemotherapeutic agents to diseased target cells. Biotechnological advances have expanded the repertoire of immunology-based tumor-targeting strategies, also paving the way for the next intuitive step in targeted drug delivery: the construction of recombinant protein drugs consisting of an antibody-based targeting domain genetically fused with a cytotoxic peptide, known as an immunotoxin. However, the most potent protein toxins have typically been derived from bacterial or plant virulence factors and commonly feature both off-target toxicity and immunogenicity in human patients. Further refinement of immunotoxin technology thus led to the replacement of monoclonal antibodies with humanized antibody derivatives, including the substitution of non-human toxic peptides with human cytolytic proteins. Preclinically tested human cytolytic fusion proteins (hCFPs) have proven promising as non-immunogenic combinatory anti-cancer agents, however they still require further enhancement to achieve convincing candidacy as a single-mode therapeutic. To date, a portfolio of highly potent human toxins has been established; ranging from microtubule-associated protein tau (MAP tau), RNases, granzyme B (GrB) and death-associated protein kinase (DAPk). In this review, we discuss the most recent findings on the use of these apoptosis-inducing hCFPs for the treatment of various cancers.

4.
Biomedicines ; 6(2)2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925790

RESUMEN

Cancer immunotherapy aims to selectively target and kill tumor cells whilst limiting the damage to healthy tissues. Controlled delivery of plant, bacterial and human toxins or enzymes has been shown to promote the induction of apoptosis in cancerous cells. The 4th generation of targeted effectors are being designed to be as humanized as possible—a solution to the problem of immunogenicity encountered with existing generations. Granzymes are serine proteases which naturally function in humans as integral cytolytic effectors during the programmed cell death of cancerous and pathogen-infected cells. Secreted predominantly by cytotoxic T lymphocytes and natural killer cells, granzymes function mechanistically by caspase-dependent or caspase-independent pathways. These natural characteristics make granzymes one of the most promising human enzymes for use in the development of fusion protein-based targeted therapeutic strategies for various cancers. In this review, we explore research involving the use of granzymes as cytolytic effectors fused to antibody fragments as selective binding domains.

5.
Biomedicines ; 6(1)2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29510557

RESUMEN

Targeted cancer therapy includes, amongst others, antibody-based delivery of toxic payloads to selectively eliminate tumor cells. This payload can be either a synthetic small molecule drug composing an antibody-drug conjugate (ADC) or a cytotoxic protein composing an immunotoxin (IT). Non-human cytotoxic proteins, while potent, have limited clinical efficacy due to their immunogenicity and potential off-target toxicity. Humanization of the cytotoxic payload is essential and requires harnessing of potent apoptosis-inducing human proteins with conditional activity, which rely on targeted delivery to contact their substrate. Ribonucleases are attractive candidates, due to their ability to induce apoptosis by abrogating protein biosynthesis via tRNA degradation. In fact, several RNases of the pancreatic RNase A superfamily have shown potential as anti-cancer agents. Coupling of a human RNase to a humanized antibody or antibody derivative putatively eliminates the immunogenicity of an IT (now known as a human cytolytic fusion protein, hCFP). However, RNases are tightly regulated in vivo by endogenous inhibitors, controlling the ribonucleolytic balance subject to the cell's metabolic requirements. Endogenous inhibition limits the efficacy with which RNase-based hCFPs induce apoptosis. However, abrogating the natural interaction with the natural inhibitors by mutation has been shown to significantly enhance RNase activity, paving the way toward achieving cytolytic potency comparable to that of bacterial immunotoxins. Here, we review the immunoRNases that have undergone preclinical studies as anti-cancer therapeutic agents.

6.
Front Microbiol ; 9: 3158, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622524

RESUMEN

The advances in cancer biology and pathogenesis during the past two decades, have resulted in immunotherapeutic strategies that have revolutionized the treatment of malignancies, from relatively non-selective toxic agents to specific, mechanism-based therapies. Despite extensive global efforts, infectious diseases remain a leading cause of morbidity and mortality worldwide, necessitating novel, innovative therapeutics that address the current challenges of increasing antimicrobial resistance. Similar to cancer pathogenesis, infectious pathogens successfully fashion a hospitable environment within the host and modulate host metabolic functions to support their nutritional requirements, while suppressing host defenses by altering regulatory mechanisms. These parallels, and the advances made in targeted therapy in cancer, may inform the rational development of therapeutic interventions for infectious diseases. Although "immunotherapy" is habitually associated with the treatment of cancer, this review accentuates the evolving role of key targeted immune interventions that are approved, as well as those in development, for various cancers and infectious diseases. The general features of adoptive therapies, those that enhance T cell effector function, and ligand-based therapies, that neutralize or eliminate diseased cells, are discussed in the context of specific diseases that, to date, lack appropriate remedial treatment; cancer, HIV, TB, and drug-resistant bacterial and fungal infections. The remarkable diversity and versatility that distinguishes immunotherapy is emphasized, consequently establishing this approach within the armory of curative therapeutics, applicable across the disease spectrum.

7.
Biomedicines ; 5(4)2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28976934

RESUMEN

Targeted cancer immunotherapy is designed to selectively eliminate tumor cells without harming the surrounding healthy tissues. The death-associated protein kinases (DAPk) are a family of proapoptotic proteins that play a vital role in the regulation of cellular process and have been identified as positive mediators of apoptosis via extrinsic and intrinsic death-regulating signaling pathways. Tumor suppressor activities have been shown for DAPk1 and DAPk2 and they are downregulated in e.g., Hodgkin's (HL) and B cell lymphoma (CLL), respectively. Here, we review a targeted therapeutic approach which involves reconstitution of DAPks by the generation of immunokinase fusion proteins. These recombinant proteins consist of a disease-specific ligand fused to a modified version of DAPk1 or DAPk2. HL was targeted via CD30 and B-CLL via CD22 cell surface antigens.

8.
Biomedicines ; 5(3)2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28895912

RESUMEN

To date, no curative therapy is available for the treatment of most chronic inflammatory diseases such as atopic dermatitis, rheumatoid arthritis, or autoimmune disorders. Current treatments require a lifetime supply for patients to alleviate clinical symptoms and are unable to stop the course of disease. In contrast, a new series of immunotherapeutic agents targeting the Fc γ receptor I (CD64) have emerged and demonstrated significant clinical potential to actually resolving chronic inflammation driven by M1-type dysregulated macrophages. This subpopulation plays a key role in the initiation and maintenance of a series of chronic diseases. The novel recombinant M1-specific immunotherapeutics offer the prospect of highly effective treatment strategies as they have been shown to selectively eliminate the disease-causing macrophage subpopulations. In this review, we provide a detailed summary of the data generated, together with the advantages and the clinical potential of CD64-based targeted therapies for the treatment of chronic inflammatory diseases.

9.
Biomedicines ; 5(3)2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28657611

RESUMEN

Chondroitin-sulfate proteoglycan 4 (CSPG4) is a transmembrane glycoprotein overexpressed on malignant cells in several cancer types with only limited expression on normal cells. CSPG4 is implicated in several signaling pathways believed to drive cancer progression, particularly proliferation, motility and metastatic spread. Expression may serve as a prognostic marker for survival and risk of relapse in treatment-resistant malignancies including melanoma, triple negative breast cancer, rhabdomyosarcoma and acute lymphoblastic leukemia. This tumor-associated overexpression of CSPG4 points towards a highly promising therapeutic target for antibody-guided cancer therapy. Monoclonal αCSPG4 antibodies have been shown to inhibit cancer progression by blocking ligand access to the CSPG4 extracellular binding sites. Moreover, CSPG4-directed antibody conjugates have been shown to be selectively internalized by CSPG4-expressing cancer cells via endocytosis. CSPG4-directed immunotherapy may be approached in several ways, including: (1) antibody-based fusion proteins for the selective delivery of a pro-apoptotic factors such as tumor necrosis factor-related apoptosis-inducing ligand to agonistic death receptors 4 and 5 on the cell surface; and (2) CSPG4-specific immunotoxins which bind selectively to diseased cells expressing CSPG4, are internalized by them and induce arrest of biosynthesis, closely followed by initiation of apoptotic signaling. Here we review various methods of exploiting tumor-associated CSPG4 expression to improve targeted cancer therapy.

10.
Biomedicines ; 5(3)2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28653985

RESUMEN

Some of the most promising small molecule toxins used to generate antibody drug conjugates (ADCs) include anti-mitotic agents (e.g., auristatin and its derivatives) which are designed to attack cancerous cells at their most vulnerable state during mitosis. We were interested in identifying a human cystostatic protein eventually showing comparable activities and allowing the generation of corresponding targeted fully human cytolytic fusion proteins. Recently, we identified the human microtubule associated protein tau (MAP tau), which binds specifically to tubulin and modulates the stability of microtubules, thereby blocking mitosis and presumably vesicular transport. By binding and stabilizing polymerized microtubule filaments, MAP tau-based fusion proteins skew microtubule dynamics towards cell cycle arrest and apoptosis. This biological activity makes rapidly proliferating cells (e.g., cancer and inflammatory cells) an excellent target for MAP tau-based targeted treatments. Their superior selectivity for proliferating cells confers additional selectivity towards upregulated tumor-associated antigens at their surface, thereby preventing off-target related toxicity against normal cells bearing tumor-associated antigens at physiologically normal to low levels. In this review, we highlight recent findings on MAP tau-based targeted cytolytic fusion proteins reported in preclinical immunotherapeutic studies.

11.
Biomedicines ; 5(1)2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28536352

RESUMEN

Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to upregulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such "high-resolution" detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields.

12.
PLoS One ; 11(7): e0159141, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27427967

RESUMEN

Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C) viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG ΔpanCD auxotroph and modified vaccinia Ankara (MVA) vaccines expressing HIV-1C mosaic Gag (GagM) were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-GagM vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-GagM and boosting with MVA-GagM elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-GagM only and MVA-GagM only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4+ and CD8+ T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (104 pfu) can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C).


Asunto(s)
Vacunas contra el SIDA/uso terapéutico , Vacuna BCG/uso terapéutico , Infecciones por VIH/prevención & control , VIH-1/inmunología , Linfocitos T/inmunología , Vacunas Virales/uso terapéutico , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Animales , Vacuna BCG/genética , Vacuna BCG/inmunología , Femenino , Infecciones por VIH/inmunología , VIH-1/genética , Humanos , Interferón gamma/inmunología , Ratones , Ratones Endogámicos BALB C , Mycobacterium bovis/genética , Mycobacterium bovis/inmunología , Linfocitos T/virología , Vacunación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología
13.
PLoS One ; 10(3): e0118654, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25781898

RESUMEN

The ability of antigen-specific T cells to simultaneously produce multiple cytokines is thought to correlate with the functional capacity and efficacy of T cells. These 'polyfunctional' T cells have been associated with control of HIV. We aimed to assess the impact of co-infection with Mycobacterium tuberculosis (MTB) on HIV-specific CD8+ and CD4+ T cell function. We assessed T cell functionality in 34 South African adults by investigating the IFN-y, IL-2, TNF-α, IL-21 and IL-17 cytokine secretion capacity, using polychromatic flow cytometry, following HIV Gag-specific stimulation of peripheral blood mononuclear cells. We show that MTB is associated with lower HIV-specific T cell function in co-infected as compared to HIV mono-infected individuals. This decline in function was greatest in co-infection with active Tuberculosis (TB) compared to co-infection with latent MTB (LTBI), suggesting that mycobacterial load may contribute to this loss of function. The described impact of MTB on HIV-specific T cell function may be a mechanism for increased HIV disease progression in co-infected subjects as functionally impaired T cells may be less able to control HIV.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , VIH/inmunología , Mycobacterium tuberculosis/inmunología , Adulto , Coinfección/inmunología , Femenino , Citometría de Flujo , Infecciones por VIH/complicaciones , Infecciones por VIH/inmunología , Humanos , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Interleucina-2/metabolismo , Interleucinas/metabolismo , Tuberculosis Latente/complicaciones , Tuberculosis Latente/inmunología , Leucocitos Mononucleares/inmunología , Masculino , Tuberculosis/complicaciones , Tuberculosis/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
14.
AIDS ; 28(18): 2671-6, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25211438

RESUMEN

OBJECTIVES: This study aimed to assess how Mycobacterium tuberculosis (MTB) coinfection alters the impact of interleukin-10 in chronic HIV infection. DESIGN: We assessed plasma cytokine levels (interleukin-10, interferon-γ, tumor necrosis factor-α, interleukin-2, interleukin-6 and interleukin-13) in 82 individuals presenting with HIV monoinfection, HIV-LTBI (latent MTB infection) coinfection or HIV-TB (active tuberculosis) coinfection. We also assessed the influence of MTB on the functional impact of interleukin-10 receptor alpha (interleukin-10Rα) blockade on HIV and MTB-specific CD4(+) T cells. METHODS: Plasma cytokine levels were measured by high sensitivity Luminex. We used an ex-vivo interleukin-10Rα blockade assay to assess if functional enhancement of HIV and MTB-specific CD4(+) T cells was possible following a 48-h stimulation with HIV gag or pooled ESAT-6 (6 kDa early secretory antigenic target) and CFP-10 (10-kDa culture filtrate protein) peptides. Cell supernatant was collected 48 h after stimulation and the cytokine profile was measured by Luminex. RESULTS: Plasma interleukin-10 levels were elevated in HIV-TB as compared with HIV monoinfection (P < 0.05) and HIV-LTBI (P < 0.05). Plasma interleukin-10 levels correlated to HIV viral load in HIV monoinfection (P = 0.016) and HIV-LTBI (P = 0.042), but not HIV-TB. Ex-vivo blockade of interleukin-10Rα significantly enhanced MTB and HIV-specific CD4(+) T-cell function in HIV-LTBI individuals but not in HIV-TB individuals. CONCLUSION: Tuberculosis disrupts the correlation between interleukin-10 and markers of HIV disease progression. In addition, HIV-TB is associated with a more inflammatory cytokine milieu compared with HIV monoinfection. Interestingly, interleukin-10Rα blockade can enhance both HIV and MTB-specific T-cell function in HIV-LTBI, but not in HIV-TB coinfection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/complicaciones , Infecciones por VIH/inmunología , Interleucina-10/sangre , Mycobacterium tuberculosis/inmunología , Tuberculosis/complicaciones , Tuberculosis/inmunología , Humanos , Interleucina-10/inmunología
15.
PLoS One ; 7(6): e37920, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685549

RESUMEN

Monitoring of latent Mycobacterium tuberculosis infection may prevent disease. We tested an ESAT-6 and CFP-10-specific IFN-γ Elispot assay (RD1-Elispot) on 163 HIV-infected individuals living in a TB-endemic setting. An RD1-Elispot was performed every 3 months for a period of 3-21 months. 62% of RD1-Elispot negative individuals were positive by cultured Elispot. Fluctuations in T cell response were observed with rates of change ranging from -150 to +153 spot-forming cells (SFC)/200,000 PBMC in a 3-month period. To validate these responses we used an RD1-specific real time quantitative PCR assay for monokine-induced by IFN-γ (MIG) and IFN-γ inducible protein-10 (IP10) (MIG: r=0.6527, p=0.0114; IP-10: r=0.6967, p=0.0056; IP-10+MIG: r=0.7055, p=0.0048). During follow-up 30 individuals were placed on ARVs and 4 progressed to active TB. Fluctuations in SFC did not correlate with CD4 count, viral load, treatment initiation, or progression to active TB. The RD1-Elispot appears to have limited value in this setting.


Asunto(s)
Infecciones por VIH/inmunología , Mycobacterium tuberculosis/inmunología , Linfocitos T/inmunología , Tuberculosis/inmunología , Recuento de Linfocito CD4 , Quimiocina CXCL10/genética , Quimiocina CXCL9/genética , Coinfección/diagnóstico , Coinfección/inmunología , Ensayo de Immunospot Ligado a Enzimas/métodos , VIH/inmunología , Infecciones por VIH/diagnóstico , Humanos , Límite de Detección , Estudios Prospectivos , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/metabolismo , Factores de Tiempo , Tuberculosis/diagnóstico , Carga Viral
16.
PLoS One ; 6(8): e20606, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21853018

RESUMEN

Here we describe the development and validation of a highly sensitive assay of antigen-specific IFN-γ production using real time quantitative PCR (qPCR) for two reporters--monokine-induced by IFN-γ (MIG) and the IFN-γ inducible protein-10 (IP10). We developed and validated the assay and applied it to the detection of CMV, HIV and Mycobacterium tuberculosis (MTB) specific responses, in a cohort of HIV co-infected patients. We compared the sensitivity of this assay to that of the ex vivo RD1 (ESAT-6 and CFP-10)-specific IFN-γ Elispot assay. We observed a clear quantitative correlation between the two assays (P<0.001). Our assay proved to be a sensitive assay for the detection of MTB-specific T cells, could be performed on whole blood samples of fingerprick (50 uL) volumes, and was not affected by HIV-mediated immunosuppression. This assay platform is potentially of utility in diagnosis of infection in this and other clinical settings.


Asunto(s)
Inmunoensayo/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Linfocitos T/inmunología , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Ensayo de Immunospot Ligado a Enzimas , Epítopos/inmunología , Regulación de la Expresión Génica , VIH/inmunología , Infecciones por VIH/diagnóstico , Infecciones por VIH/inmunología , Infecciones por VIH/microbiología , Infecciones por VIH/virología , Humanos , Terapia de Inmunosupresión , Interferón gamma/metabolismo , Leucocitos Mononucleares/metabolismo , Mycobacterium tuberculosis/inmunología , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Especificidad de la Especie , Tuberculosis/sangre , Tuberculosis/diagnóstico , Tuberculosis/inmunología , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA