Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(31): 7949-7954, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012592

RESUMEN

The importance of BET protein BRD4 in gene transcription is well recognized through the study of chemical modulation of its characteristic tandem bromodomain (BrD) binding to lysine-acetylated histones and transcription factors. However, while monovalent inhibition of BRD4 by BET BrD inhibitors such as JQ1 blocks growth of hematopoietic cancers, it is much less effective generally in solid tumors. Here, we report a thienodiazepine-based bivalent BrD inhibitor, MS645, that affords spatially constrained tandem BrD inhibition and consequently sustained repression of BRD4 transcriptional activity in blocking proliferation of solid-tumor cells including a panel of triple-negative breast cancer (TNBC) cells. MS645 blocks BRD4 binding to transcription enhancer/mediator proteins MED1 and YY1 with potency superior to monovalent BET inhibitors, resulting in down-regulation of proinflammatory cytokines and genes for cell-cycle control and DNA damage repair that are largely unaffected by monovalent BrD inhibition. Our study suggests a therapeutic strategy to maximally control BRD4 activity for rapid growth of solid-tumor TNBC cells.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteínas de Ciclo Celular , Línea Celular Tumoral , Femenino , Humanos , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(11): 2952-2957, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28265070

RESUMEN

T-helper 17 (Th17) cells have important functions in adaptor immunity and have also been implicated in inflammatory disorders. The bromodomain and extraterminal domain (BET) family proteins regulate gene transcription during lineage-specific differentiation of naïve CD4+ T cells to produce mature T-helper cells. Inhibition of acetyl-lysine binding of the BET proteins by pan-BET bromodomain (BrD) inhibitors, such as JQ1, broadly affects differentiation of Th17, Th1, and Th2 cells that have distinct immune functions, thus limiting their therapeutic potential. Whether these BET proteins represent viable new epigenetic drug targets for inflammatory disorders has remained an unanswered question. In this study, we report that selective inhibition of the first bromodomain of BET proteins with our newly designed small molecule MS402 inhibits primarily Th17 cell differentiation with a little or almost no effect on Th1 or Th2 and Treg cells. MS402 preferentially renders Brd4 binding to Th17 signature gene loci over those of housekeeping genes and reduces Brd4 recruitment of p-TEFb to phosphorylate and activate RNA polymerase II for transcription elongation. We further show that MS402 prevents and ameliorates T-cell transfer-induced colitis in mice by blocking Th17 cell overdevelopment. Thus, selective pharmacological modulation of individual bromodomains likely represents a strategy for treatment of inflammatory bowel diseases.


Asunto(s)
Diferenciación Celular , Colitis/etiología , Colitis/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Células Th17/citología , Células Th17/metabolismo , Animales , Colitis/patología , Biología Computacional/métodos , Modelos Animales de Enfermedad , Humanos , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Ratones , Ratones Noqueados , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células Th17/inmunología
3.
AAPS J ; 15(3): 864-74, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23658110

RESUMEN

3,3'-diindolylmethane (DIM) is currently being investigated in many clinical trials including prostate, breast, and cervical cancers and has been shown to possess anticancer effects in several in vivo and in vitro models. Previously, DIM has been reported to possess cancer chemopreventive effects in prostate carcinogenesis in TRAMP mice; however, the in vivo mechanism is unclear. The present study aims to investigate the in vitro and in vivo epigenetics modulation of DIM in TRAMP-C1 cells and in TRAMP mouse model. In vitro study utilizing TRAMP-C1 cells showed that DIM suppressed DNMT expression and reversed CpG methylation status of Nrf2 resulting in enhanced expression of Nrf2 and Nrf2-target gene NQO1. In vivo study, TRAMP mice fed with DIM-supplemented diet showed much lower incidence of tumorigenesis and metastasis than the untreated control group similar to what was reported previously. DIM increased apoptosis, decreased cell proliferation and enhanced Nrf2 and Nrf2-target gene NQO1 expression in prostate tissues. Importantly, immunohistochemical analysis showed that DIM reduced the global CpG 5-methylcytosine methylation. Focusing on one of the early cancer chemopreventive target gene Nrf2, bisulfite genomic sequencing showed that DIM decreased the methylation status of the first five CpGs of the Nrf2 promoter region, corroborating with the results of in vitro TRAMP-C1 cells. In summary, our current study shows that DIM is a potent cancer chemopreventive agent for prostate cancer and epigenetic modifications of the CpG including Nrf2 could be a potential mechanism by which DIM exerts its chemopreventive effects.


Asunto(s)
Anticarcinógenos/uso terapéutico , Epigénesis Genética/fisiología , Indoles/uso terapéutico , Factor 2 Relacionado con NF-E2/fisiología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Miembro 25 de Receptores de Factores de Necrosis Tumoral/genética , Animales , Anticarcinógenos/farmacología , Línea Celular Tumoral , Femenino , Indoles/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
AAPS J ; 13(4): 606-14, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21938566

RESUMEN

Curcumin (CUR), a major bioactive polyphenolic component from turmeric curry, Curcuma longa, has been shown to be a potent anti-cancer phytochemical with well-established anti-inflammatory and anti-oxidative stress effects. Chromatin remodeling-related epigenetic regulation has emerged as an important mechanism of carcinogenesis, chemoprevention, and chemotherapy. CUR has been found to inhibit histone acetyltransferase activity, and it was also postulated to be a potential DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitor. In this study, we show that when human prostate LNCaP cells were treated with CUR, it led to demethylation of the first 14 CpG sites of the CpG island of the Neurog1 gene and restored the expression of this cancer-related CpG-methylation epigenome marker gene. At the protein level, CUR treatment had limited effects on the expression of epigenetic modifying proteins MBD2, MeCP2, DNMT1, and DNMT3a. Using ChIP assay, CUR decreased MeCP2 binding to the promoter of Neurog1 dramatically. CUR treatment showed different effects on the protein expression of HDACs, increasing the expression of HDAC1, 4, 5, and 8 but decreasing HDAC3. However, the total HDAC activity was decreased upon CUR treatment. Further analysis of the tri-methylation of histone 3 at lysine 27 (H3K27me3) showed that CUR decreased the enrichment of H3K27me3 at the Neurog1 promoter region as well as at the global level. Taken together, our present study provides evidence on the CpG demethylation ability of CUR on Neurog1 while activating its expression, suggesting a potential epigenetic modifying role for this phytochemical compound in human prostate cancer cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Islas de CpG , Curcumina/farmacología , Metilación de ADN , Epigénesis Genética , Expresión Génica/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , Secuencia de Bases , Western Blotting , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Metilasas de Modificación del ADN/antagonistas & inhibidores , Cartilla de ADN , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Cancer Metastasis Rev ; 29(3): 483-502, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20798979

RESUMEN

Carcinogenesis is a multi-step process which could be prevented by phytochemicals. Phytochemicals from dietary plants and other plant sources such as herbs are becoming increasingly important sources of anticancer drugs or compounds for cancer chemoprevention or adjuvant chemotherapy. Phytochemicals can prevent cancer initiation, promotion, and progression by exerting anti-inflammatory and anti-oxidative stress effects which are mediated by integrated Nrf2, NF-kappaB, and AP-1 signaling pathways. In addition, phytochemicals from herbal medicinal plants and/or some dietary plants developed in recent years have been shown to induce apoptosis in cancer cells and inhibition of tumor growth in vivo. In advanced tumors, a series of changes involving critical signaling molecules that would drive tumor cells undergoing epithelial-mesenchymal transition and becoming invasive. In this review, we will discuss the potential molecular targets and signaling pathways that mediate tumor onset and metastasis. In addition, we will shed light on some of the phytochemicals that are capable of targeting these signaling pathways which would make them potentially applicable to cancer chemoprevention, treatment and control of cancer progression.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Metástasis de la Neoplasia/prevención & control , Neoplasias/prevención & control , Fitoterapia , Animales , Transformación Celular Neoplásica/efectos de los fármacos , Transición Epitelial-Mesenquimal , Humanos , Neoplasias/patología , Transducción de Señal/efectos de los fármacos
6.
PLoS One ; 5(1): e8579, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-20062804

RESUMEN

Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is a transcription factor which regulates the expression of many cytoprotective genes. In the present study, we found that the expression of Nrf2 was suppressed in prostate tumor of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice. Similarly, the expression of Nrf2 and the induction of NQO1 were also substantially suppressed in tumorigenic TRAMP C1 cells but not in non-tumorigenic TRAMP C3 cells. Examination of the promoter region of the mouse Nrf2 gene identified a CpG island, which was methylated at specific CpG sites in prostate TRAMP tumor and in TRAMP C1 cells but not in normal prostate or TRAMP C3 cells, as shown by bisulfite genomic sequencing. Reporter assays indicated that methylation of these CpG sites dramatically inhibited the transcriptional activity of the Nrf2 promoter. Chromatin immunopreceipitation (ChIP) assays revealed increased binding of the methyl-CpG-binding protein 2 (MBD2) and trimethyl-histone H3 (Lys9) proteins to these CpG sites in the TRAMP C1 cells as compared to TRAMP C3 cells. In contrast, the binding of RNA Pol II and acetylated histone H3 to the Nrf2 promoter was decreased. Furthermore, treatment of TRAMP C1 cells with DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-aza) and histone deacetylase (HDAC) inhibitor trichostatin A (TSA) restored the expression of Nrf2 as well as the induction of NQO1 in TRAMP C1 cells. Taken together, these results indicate that the expression of Nrf2 is suppressed epigenetically by promoter methylation associated with MBD2 and histone modifications in the prostate tumor of TRAMP mice. Our present findings reveal a novel mechanism by which Nrf2 expression is suppressed in TRAMP prostate tumor, shed new light on the role of Nrf2 in carcinogenesis and provide potential new directions for the detection and prevention of prostate cancer.


Asunto(s)
Epigénesis Genética , Factor 2 Relacionado con NF-E2/genética , Neoplasias de la Próstata/genética , Miembro 25 de Receptores de Factores de Necrosis Tumoral/fisiología , Animales , Azacitidina/farmacología , Islas de CpG , Metilación de ADN , Masculino , Ratones , Miembro 25 de Receptores de Factores de Necrosis Tumoral/genética , Transcripción Genética , Tricosantina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA