Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Biofilm ; 7: 100191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38544741

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen causing chronic infections that are related to its ability to form biofilms. Mechanosensitive ion channels (Mcs) are cytoplasmic membrane proteins whose opening depends on a mechanical stress impacting the lipid bilayer. CmpX is a homologue of the small conductance MscS of Escherichia coli. The cmpX gene is part of a transcriptional cfrX-cmpX unit that is under the control of the cell envelope stress response ECF sigma factor SigX. CmpX was shown to regulate the activity of the hybrid sensor kinase PA1611 involved in the regulation of transition from a planktonic to a biofilm lifestyle. The deletion of cmpX leads to increased biofilm formation under static conditions. Herein, the effect of cmpX overexpression was investigated by confocal laser scanning microscopy in terms of biofilm formation and architecture, and matrix components production, in dynamic conditions. We show that overexpression of cmpX in P. aeruginosa leads to enhanced and altered biofilm architecture that seems to be associated to increased matrix components and the emergence of filamentous cells. These phenotypic alterations might occur potentially through a shear stress induced by the medium flow rate. Importance: CmpX is involved in biofilm formation and cell filamentation with regards to the medium flow.

2.
Microbiol Spectr ; 12(4): e0230323, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38411953

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen, which causes chronic infections, especially in cystic fibrosis (CF) patients where it colonizes the lungs via the build-up of biofilms. Tobramycin, an aminoglycoside, is often used to treat P. aeruginosa infections in CF patients. Tobramycin at sub-minimal inhibitory concentrations enhances both biofilm biomass and thickness in vitro; however, the mechanism(s) involved are still unknown. Herein, we show that tobramycin increases the expression and activity of SigX, an extracytoplasmic sigma factor known to be involved in the biosynthesis of membrane lipids and membrane fluidity homeostasis. The biofilm enhancement by tobramycin is not observed in a sigX mutant, and the sigX mutant displays increased membrane stiffness. Remarkably, the addition of polysorbate 80 increases membrane fluidity of sigX-mutant cells in biofilm, restoring the tobramycin-enhanced biofilm formation. Our results suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.IMPORTANCEPrevious studies have shown that sub-lethal concentrations of tobramycin led to an increase biofilm formation in the case of infections with the opportunistic pathogen Pseudomonas aeruginosa. We show that the mechanism involved in this phenotype relies on the cell envelope stress response, triggered by the extracytoplasmic sigma factor SigX. This phenotype was abolished in a sigX-mutant strain. Remarkably, we show that increasing the membrane fluidity of the mutant strain is sufficient to restore the effect of tobramycin. Altogether, our data suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.


Asunto(s)
Infecciones por Pseudomonas , Tobramicina , Humanos , Tobramicina/farmacología , Pseudomonas aeruginosa , Fluidez de la Membrana , Factor sigma/genética , Factor sigma/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Biopelículas , Homeostasis
3.
Sci Rep ; 13(1): 22145, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092873

RESUMEN

Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.


Asunto(s)
Legionella pneumophila , Legionella , Ácidos Ftálicos , Humanos , Legionella pneumophila/fisiología , Ácidos Ftálicos/farmacología , Biopelículas
4.
Bioorg Med Chem Lett ; 96: 129517, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37838341

RESUMEN

The search for new classes of antibiotics is a real concern of public health due to the emergence of multi-resistant bacteria strains. We report herein the synthesis and characterization of a new series of 13 molecules combining isoxazoline/isoxazole sulfonamides and hydrazides motives. These molecules were obtained according to a costless eco-friendly procedure, and a one-pot three-step cascade synthesis under ultrasonic cavitation. All the synthesized compounds were fully characterized by HRMS, 1H NMR, 13C NMR spectroscopy and HPLC analysis. These new molecules have been evaluated against the major human opportunistic pathogen Pseudomonas aeruginosa to determine their potential to affect its growth and biofilm formation or dispersion. Two derivatives (5a and 6a) demonstrated their ability to destabilize a mature biofilm by about 50 % within 24 h. This may pave the way to the development of a new class of compounds affecting biofilm, which are easy to synthesize according to green chemistry processes.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Sulfanilamida , Sulfonamidas/farmacología
5.
Environ Microbiol ; 25(11): 2564-2579, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37622480

RESUMEN

The type VI secretion system (T6SS) is a contractile nanomachine widespread in Gram-negative bacteria. The T6SS injects effectors into target cells including eukaryotic hosts and competitor microbial cells and thus participates in pathogenesis and intermicrobial competition. Pseudomonas fluorescens MFE01 possesses a single T6SS gene cluster that confers biocontrol properties by protecting potato tubers against the phytopathogen Pectobacterium atrosepticum (Pca). Here, we demonstrate that a functional T6SS is essential to protect potato tuber by reducing the pectobacteria population. Fluorescence microscopy experiments showed that MFE01 displays an aggressive behaviour with an offensive T6SS characterized by continuous and intense T6SS firing activity. Interestingly, we observed that T6SS firing is correlated with rounding of Pectobacterium cells, suggesting delivery of a potent cell wall targeting effector. Mutagenesis coupled with functional assays then revealed that a putative T6SS secreted amidase, Tae3Pf , is mainly responsible for MFE01 toxicity towards Pca. Further studies finally demonstrated that Tae3Pf is toxic when produced in the periplasm, and that its toxicity is counteracted by the Tai3Pf inner membrane immunity protein.


Asunto(s)
Pectobacterium , Pseudomonas fluorescens , Solanum tuberosum , Sistemas de Secreción Tipo VI , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Mutagénesis , Pectobacterium/genética , Pectobacterium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
Biofilm ; 5: 100131, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37252226

RESUMEN

Biofilms are highly tolerant to antimicrobials and host immune defense, enabling pathogens to thrive in hostile environments. The diversity of microbial biofilm infections requires alternative and complex treatment strategies. In a previous work we demonstrated that the human Atrial Natriuretic Peptide (hANP) displays a strong anti-biofilm activity toward Pseudomonas aeruginosa and that the binding of hANP by the AmiC protein supports this effect. This AmiC sensor has been identified as an analog of the human natriuretic peptide receptor subtype C (h-NPRC). In the present study, we evaluated the anti-biofilm activity of the h-NPRC agonist, osteocrin (OSTN), a hormone that displays a strong affinity for the AmiC sensor at least in vitro. Using molecular docking, we identified a pocket in the AmiC sensor that OSTN reproducibly docks into, suggesting that OSTN might possess an anti-biofilm activity as well as hANP. This hypothesis was validated since we observed that OSTN dispersed established biofilm of P. aeruginosa PA14 strain at the same concentrations as hANP. However, the OSTN dispersal effect is less marked than that observed for the hANP (-61% versus -73%). We demonstrated that the co-exposure of P. aeruginosa preformed biofilm to hANP and OSTN induced a biofilm dispersion with a similar effect to that observed with hANP alone suggesting a similar mechanism of action of these two peptides. This was confirmed by the observation that OSTN anti-biofilm activity requires the activation of the complex composed by the sensor AmiC and the regulator AmiR of the ami pathway. Using a panel of both P. aeruginosa laboratory reference strains and clinical isolates, we observed that the OSTN capacity to disperse established biofilms is highly variable from one strain to another. Taken together, these results show that similarly to the hANP hormone, OSTN has a strong potential to be used as a tool to disperse P. aeruginosa biofilms.

7.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239913

RESUMEN

A series of 6-polyaminosteroid analogues of squalamine were synthesized with moderate to good yields and evaluated for their in vitro antimicrobial properties against both susceptible and resistant Gram-positive (vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus) and Gram-negative (carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa) bacterial strains. Minimum inhibitory concentrations against Gram-positive bacteria ranged from 4 to 16 µg/mL for the most effective compounds, 4k and 4n, and showed an additive or synergistic effect with vancomycin or oxacillin. On the other hand, the derivative 4f, which carries a spermine moiety like that of the natural trodusquemine molecule, was found to be the most active derivative against all the resistant Gram-negative bacteria tested, with an MIC value of 16 µg/mL. Our results suggest that 6-polyaminosteroid analogues of squalamine are interesting candidates for Gram-positive bacterial infection treatments, as well as potent adjuvants to fight Gram-negative bacterial resistance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Vancomicina/farmacología , Antibacterianos/farmacología , Colestanoles , Bacterias Grampositivas , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
8.
Microbiol Spectr ; 11(1): e0243022, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36625660

RESUMEN

The rise of antibiotic resistance and dearth of novel antibiotics have posed a serious health crisis worldwide. In this study, we screened a combination of antibiotics and nonantibiotics providing a viable strategy to solve this issue by broadening the antimicrobial spectrum. We found that chenodeoxycholic acid (CDCA), a cholic acid derivative of the traditional Chinese medicine (TCM) Tanreqing (TRQ), synergizes with amikacin against Staphylococcus aureus in vitro, and this synergistic killing was effective against diverse methicillin-resistant S. aureus (MRSA) variants, including small-colony variants (SCVs), biofilm strains, and persisters. The CDCA-amikacin combination protects a mouse model from S. aureus infections. Mechanistically, CDCA increases the uptake of aminoglycosides in a proton motive force-dependent manner by dissipating the chemical potential and potentiates reactive oxygen species (ROS) generation by inhibiting superoxide dismutase activity. This work highlights the potential use of TCM components in treating S. aureus-associated infections and extend the use of aminoglycosides in eradicating Gram-positive pathogens. IMPORTANCE Multidrug resistance (MDR) is spreading globally with increasing speed. The search for new antibiotics is one of the key strategies in the fight against MDR. Antibiotic resistance breakers that may or may not have direct antibacterial action and can either be coadministered or conjugated with other antibiotics are being studied. To better expand the antibacterial spectrum of certain antibiotics, we identified one component from a traditional Chinese medicine, Tanreqing (TRQ), that increased the activity of aminoglycosides. We found that this so-called agent, chenodeoxycholic acid (CDCA), sensitizes Staphylococcus aureus to aminoglycoside killing and protects a mouse model from S. aureus infections. CDCA increases the uptake of aminoglycosides in a proton motive force-dependent manner by dissipating the chemical potential and potentiates ROS generation by inhibiting superoxide dismutase activity in S. aureus. Our work highlights the potential use of TCM or its effective components, such as CDCA, in treating antibiotic resistance-associated infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Ratones , Staphylococcus aureus , Amicacina/farmacología , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Aminoglicósidos/farmacología , Aminoglicósidos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Superóxido Dismutasa/farmacología , Superóxido Dismutasa/uso terapéutico , Pruebas de Sensibilidad Microbiana
9.
Biometals ; 36(2): 255-261, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35171432

RESUMEN

Pseudomonas aeruginosa is a Gram-negative bacterium which can cause serious infections among immune-depressed people including cystic fibrosis patients where it can colonize the lungs causing chronic infections. Iron is essential for P. aeruginosa and can be provided via three sources under aerobic conditions: its own siderophores pyochelin (PCH) and pyoverdine (PVD), xenosiderophores, or heme, respectively. Pyoverdine is the high affinity siderophore and its synthesis and uptake involve more than 30 genes organized in different operons. Its synthesis and uptake are triggered by iron scarcity via the Fur regulator and involves two extra cytoplasmic sigma factors (ECF), PvdS for the biosynthesis of PVD and FpvI for the uptake via the TonB-dependent FpvA outer membrane transporter and other periplasmic and inner membrane proteins. It appeared recently that the regulation of PVD biosynthesis and uptake involves other regulators, including other ECF factors, and LysR regulators. This is the case especially for the genes coding for periplasmic and inner membrane proteins involved in the reduction of Fe3+ to Fe2+ and the transport of ferrous iron to the cytoplasm that appears to represent a crucial step in the uptake process.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Proteínas de la Membrana Bacteriana Externa/genética , Hierro/metabolismo , Transporte Biológico , Sideróforos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
10.
Antibiotics (Basel) ; 13(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275318

RESUMEN

The emergence of multi-drug resistant pathogens is a major public health problem, leading us to rethink and innovate our bacterial control strategies. Here, we explore the antibiofilm and antivirulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain on four major pathogens, i.e., carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. Derivatives 4e (for CRAB, VRE, and MRSA) and 4f (for all the strains) were the most potent ones and displayed activities as good as those of conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged larvae survival (from 50% to 80%) after 24 h of CRAB, VRE, and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species but essentially linked to cell envelope. Its interesting antibiofilm and antivirulence properties make it a promising a candidate for use in therapeutics.

11.
Bioengineering (Basel) ; 9(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36354557

RESUMEN

Over the decades, conventional in vitro culture systems and animal models have been used to study physiology, nutrient or drug metabolisms including mechanical and physiopathological aspects. However, there is an urgent need for Integrated Testing Strategies (ITS) and more sophisticated platforms and devices to approach the real complexity of human physiology and provide reliable extrapolations for clinical investigations and personalized medicine. Organ-on-a-chip (OOC), also known as a microphysiological system, is a state-of-the-art microfluidic cell culture technology that sums up cells or tissue-to-tissue interfaces, fluid flows, mechanical cues, and organ-level physiology, and it has been developed to fill the gap between in vitro experimental models and human pathophysiology. The wide range of OOC platforms involves the miniaturization of cell culture systems and enables a variety of novel experimental techniques. These range from modeling the independent effects of biophysical forces on cells to screening novel drugs in multi-organ microphysiological systems, all within microscale devices. As in living biosystems, the development of vascular structure is the salient feature common to almost all organ-on-a-chip platforms. Herein, we provide a snapshot of this fast-evolving sophisticated technology. We will review cutting-edge developments and advances in the OOC realm, discussing current applications in the biomedical field with a detailed description of how this technology has enabled the reconstruction of complex multi-scale and multifunctional matrices and platforms (at the cellular and tissular levels) leading to an acute understanding of the physiopathological features of human ailments and infections in vitro.

12.
Adv Exp Med Biol ; 1386: 147-184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36258072

RESUMEN

Bacteria sense their environment via the cell envelope, which in Gram-negative bacteria comprises the outer membrane, the periplasmic space, and the inner membrane. Pseudomonas aeruginosa is an opportunistic pathogen which is exposed to different cell wall stresses imposed by exposure to antibiotics, osmotic pressure, and long-time colonization of host tissues such as the lung in cystic fibrosis patients. In response to these stresses, P. aeruginosa is able to respond by establishing a cell envelope stress response involving different regulatory pathways including the extra-cytoplasmic sigma factors AlgU, SigX, and SbrI and other two-component sensor/response regulators and effectors. This chapter aims to review the different factors leading to the activation of the cell envelope stress response in P. aeruginosa and the genetic determinants involved in this response, which is crucial for the survival of the bacterium upon exposure to different stressful conditions.


Asunto(s)
Fibrosis Quística , Pseudomonas aeruginosa , Humanos , Antibacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fibrosis Quística/microbiología , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Factor sigma/genética , Factor sigma/metabolismo , Estrés Fisiológico
13.
Microorganisms ; 10(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36144390

RESUMEN

Phthalates are used in a variety of applications-for example, as plasticizers in polyvinylchloride products to improve their flexibility-and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells. While multicellular organisms such as humans are known to display various microbiota, including all of the microorganisms that may be commensal, symbiotic, or pathogenic, few studies have aimed at investigating the relationships between phthalates and bacteria, notably regarding their effects on opportunistic pathogens and the severity of the associated pathologies. Herein, the effects of phthalates and their substitutes were investigated on the human pathogen, Pseudomonas aeruginosa, in terms of physiology, virulence, susceptibility to antibiotics, and ability to form biofilms. We show in particular that most of these compounds increased biofilm formation, while some of them enhanced the bacterial membrane fluidity and altered the bacterial morphology.

14.
Mar Drugs ; 20(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36005527

RESUMEN

For more than 40 years, marine microorganisms have raised great interest because of their major ecological function and their numerous applications for biotechnology and pharmacology. Particularly, Archaea represent a resource of great potential for the identification of new metabolites because of their adaptation to extreme environmental conditions and their original metabolic pathways, allowing the synthesis of unique biomolecules. Studies on archaeal carotenoids are still relatively scarce and only a few works have focused on their industrial scale production and their biotechnological and pharmacological properties, while the societal demand for these bioactive pigments is growing. This article aims to provide a comprehensive review of the current knowledge on carotenoid metabolism in Archaea and the potential applications of these pigments in biotechnology and medicine. After reviewing the ecology and classification of these microorganisms, as well as their unique cellular and biochemical characteristics, this paper highlights the most recent data concerning carotenoid metabolism in Archaea, the biological properties of these pigments, and biotechnological considerations for their production at industrial scale.


Asunto(s)
Archaea , Carotenoides , Archaea/metabolismo , Biotecnología , Carotenoides/metabolismo , Pigmentación
15.
Microbiol Spectr ; 10(5): e0154822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36036571

RESUMEN

Pf4 is a filamentous bacteriophage integrated as a prophage into the genome of Pseudomonas aeruginosa PAO1. Pf4 virions can be produced without killing P. aeruginosa. However, cell lysis can occur during superinfection when Pf virions successfully infect a host lysogenized by a Pf superinfective variant. We have previously shown that infection of P. aeruginosa PAO1 with a superinfective Pf4 variant abolished twitching motility and altered biofilm architecture. More precisely, most of the cells embedded into the biofilm were showing a filamentous morphology, suggesting the activation of the cell envelope stress response involving both AlgU and SigX extracytoplasmic function sigma factors. Here, we show that Pf4 variant infection results in a drastic dysregulation of 3,360 genes representing about 58% of P. aeruginosa genome; of these, 70% of the virulence factors encoding genes show a dysregulation. Accordingly, Pf4 variant infection (termed Pf4*) causes in vivo reduction of P. aeruginosa virulence and decreased production of N-acyl-homoserine lactones and 2-alkyl-4-quinolones quorum-sensing molecules and related virulence factors, such as pyocyanin, elastase, and pyoverdine. In addition, the expression of genes involved in metabolism, including energy generation and iron homeostasis, was affected, suggesting further relationships between virulence and central metabolism. Altogether, these data show that Pf4 phage variant infection results in complex network dysregulation, leading to reducing acute virulence in P. aeruginosa. This study contributes to the comprehension of the bacterial response to filamentous phage infection. IMPORTANCE Filamentous bacteriophages can become superinfective and infect P. aeruginosa, even though they are inserted in the genome as lysogens. Despite this productive infection, growth of the host is only mildly affected, allowing the study of the interaction between the phage and the host, which is not possible in the case of lytic phages killing rapidly their host. Here, we demonstrate by transcriptome and phenotypic analysis that the infection by a superinfective filamentous phage variant causes a massive disruption in gene expression, including those coding for virulence factors and metabolic pathways.


Asunto(s)
Bacteriófagos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Virulencia , Piocianina/metabolismo , Bacteriófagos/genética , Acil-Butirolactonas/metabolismo , Percepción de Quorum , Biopelículas , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Hierro/metabolismo , Elastasa Pancreática/metabolismo , 4-Quinolonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
16.
Microorganisms ; 10(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36013994

RESUMEN

Bacteria are often exposed to nitrosative stress from their environment, from atmospheric pollution or from the defense mechanisms of other organisms. Reactive nitrogen species (RNS), which mediate nitrosative stress, are notably involved in the mammalian immune response through the production of nitric oxide (NO) by the inducible NO synthase iNOS. RNS are highly reactive and can alter various biomolecules such as lipids, proteins and DNA, making them toxic for biological organisms. Resistance to RNS is therefore important for the survival of bacteria in various environments, and notably to successfully infect their host. The fuel combustion processes used in industries and transports are responsible for the emission of important quantities of two major RNS, NO and the more toxic nitrogen dioxide (NO2). Human exposure to NO2 is notably linked to increases in lung infections. While the response of bacteria to NO in liquid medium is well-studied, few data are available on their exposure to gaseous NO and NO2. This study showed that NO2 is much more toxic than NO at similar concentrations for the airborne bacterial strain Pseudomonas fluorescens MFAF76a. The response to NO2 involves a wide array of effectors, while the response to NO seemingly focuses on the Hmp flavohemoprotein. Results showed that NO2 induces the production of other RNS, unlike NO, which could explain the differences between the effects of these two molecules.

17.
Front Cell Infect Microbiol ; 12: 884045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573768

RESUMEN

Staphylococcus aureus has been recognized as an important human pathogen and poses a serious health threat worldwide. With the advent of antibiotic resistance, such as the increased number of methicillin-resistant Staphylococcus aureus (MRSA), there is an urgent need to develop new therapeutical agents. In this study, Chinese traditional medicine Tanreqing (TRQ) has been used as an alternative treating agent against MRSA and we aim to unravel the mode of action of TRQ underlying MRSA inhibition. TRQ treatment affected numerous gene expression as revealed by RNA-seq analysis. Meanwhile, TRQ targeted cell division to inhibit cell growth as shown by illumination microscopy. Besides, we confirmed that TRQ downregulates the expression of virulence factors such as hemolysin and autolysin. Finally, we used a murine model to demonstrate that TRQ efficiently reduces bacterial virulence. Altogether, we have proved TRQ formula to be an effective agent against S. aureus infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/uso terapéutico , División Celular , Medicamentos Herbarios Chinos , Humanos , Medicina Tradicional China , Staphylococcus aureus Resistente a Meticilina/genética , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulencia , Factores de Virulencia/metabolismo
18.
Microorganisms ; 10(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35630368

RESUMEN

Bacteria are frequently exposed to endogenous and exogenous reactive oxygen and nitrogen species which can damage various biomolecules such as DNA, lipids, and proteins. High concentrations of these molecules can induce oxidative and nitrosative stresses in the cell. Reactive oxygen and nitrogen species are notably used as a tool by prokaryotes and eukaryotes to eradicate concurrent species or to protect themselves against pathogens. The main example is mammalian macrophages that liberate high quantities of reactive species to kill internalized bacterial pathogens. As a result, resistance to these stresses is determinant for the survival of bacteria, both in the environment and in a host. The first bacterial component in contact with exogenous molecules is the envelope. In Gram-negative bacteria, this envelope is composed of two membranes and a layer of peptidoglycan lodged between them. Several mechanisms protecting against oxidative and nitrosative stresses are present in the envelope, highlighting the importance for the cell to deal with reactive species in this compartment. This review aims to provide a comprehensive view of the challenges posed by oxidative and nitrosative stresses to the Gram-negative bacterial envelope and the mechanisms put in place in this compartment to prevent and repair the damages they can cause.

19.
Sci Rep ; 12(1): 8528, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595726

RESUMEN

Anthropogenic atmospheric pollution and immune response regularly expose bacteria to toxic nitrogen oxides such as NO• and NO2. These reactive molecules can damage a wide variety of biomolecules such as DNA, proteins and lipids. Several components of the bacterial envelope are susceptible to be damaged by reactive nitrogen species. Furthermore, the hydrophobic core of the membranes favors the reactivity of nitrogen oxides with other molecules, making membranes an important factor in the chemistry of nitrosative stress. Since bacteria are often exposed to endogenous or exogenous nitrogen oxides, they have acquired protection mechanisms against the deleterious effects of these molecules. By exposing bacteria to gaseous NO2, this work aims to analyze the physiological effects of NO2 on the cell envelope of the airborne bacterium Pseudomonas fluorescens MFAF76a and its potential adaptive responses. Electron microscopy showed that exposure to NO2 leads to morphological alterations of the cell envelope. Furthermore, the proteomic profiling data revealed that these cell envelope alterations might be partly explained by modifications of the synthesis pathways of multiple cell envelope components, such as peptidoglycan, lipid A, and phospholipids. Together these results provide important insights into the potential adaptive responses to NO2 exposure in P. fluorescens MFAF76a needing further investigations.


Asunto(s)
Dióxido de Nitrógeno , Pseudomonas fluorescens , Dióxido de Nitrógeno/toxicidad , Fosfolípidos/metabolismo , Proteómica , Pseudomonas fluorescens/metabolismo
20.
Life (Basel) ; 12(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35455029

RESUMEN

Bacteria can bind on clothes, but the impacts of textiles leachables on cutaneous bacteria remain unknown. Here, we studied for the first time the effects of cotton and flax obtained through classical and soft ecological agriculture on the representatives S. aureus and S. epidermidis bacteria of the cutaneous microbiota. Crude flax showed an inhibitory potential on S. epidermidis bacterial lawns whereas cotton had no effect. Textile fiber leachables were produced in bacterial culture media, and these extracts were tested on S. aureus and S. epidermidis. Bacterial growth was not impacted, but investigation by the crystal violet technique and confocal microscopy showed that all extracts affected biofilm formation by the two staphylococci species. An influence of cotton and flax culture conditions was clearly observed. Flax extracts had strong inhibitory impacts and induced the formation of mushroom-like defense structures by S. aureus. Conversely, production of biosurfactant by bacteria and their surface properties were not modified. Resistance to antibiotics also remained unchanged. All textile extracts, and particularly soft organic flax, showed strong inhibitory effects on S. aureus and S. epidermidis cytotoxicity on HaCaT keratinocytes. Analysis of flax leachables showed the presence of benzyl alcohol that could partly explain the effects of flax extracts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...