Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Behav Neurosci ; 10: 82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199691

RESUMEN

Although, lying (bear false witness) is explicitly prohibited in the Decalogue and a focus of interest in philosophy and theology, more recently the behavioral and neural mechanisms of deception are gaining increasing attention from diverse fields especially economics, psychology, and neuroscience. Despite the considerable role of heredity in explaining individual differences in deceptive behavior, few studies have investigated which specific genes contribute to the heterogeneity of lying behavior across individuals. Also, little is known concerning which specific neurotransmitter pathways underlie deception. Toward addressing these two key questions, we implemented a neurogenetic strategy and modeled deception by an incentivized die-under-cup task in a laboratory setting. The results of this exploratory study provide provisional evidence that SNP variants across the tryptophan hydroxylase 2 (TPH2) gene, that encodes the rate-limiting enzyme in the biosynthesis of brain serotonin, contribute to individual differences in deceptive behavior.

2.
Front Hum Neurosci ; 7: 195, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717276

RESUMEN

Human beings are an extraordinarily altruistic species often willing to help strangers at a considerable cost (sometimes life itself) to themselves. But as Darwin noted "… he who was ready to sacrifice his life, as many a savage has been, rather than betray his comrades, would often leave no offspring to inherit his noble nature." Hence, this is the paradox of altruism. Twin studies have shown that altruism and other prosocial behavior show considerable heritability and more recently a number of candidate genes have been identified with this phenotype. Among these first provisional findings are genes encoding elements of dopaminergic transmission. In this article we will review the evidence for the involvement of one of these, the dopamine D4 receptor (DRD4) gene, in shaping human prosocial behavior and consider the methodologies employed in measuring this trait, specific molecular genetic findings and finally, evidence from several Gene × Environment (G × E) studies that imply differential susceptibility of this gene to environmental influences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA