Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 11(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35336763

RESUMEN

Human health risk and phytoremediation of potentially toxic metals (PTMs) in the edible vegetables have been widely discussed recently. This study aimed to determine the concentrations of four PTMs, namely Cd, Fe, Ni, and Zn) in Amaranthus viridis (leaves, stems, and roots) collected from 11 sampling sites in Peninsular Malaysia and to assess their human health risk (HHR). In general, the metal levels followed the order: roots > stems > leaves. The metal concentrations (µg/g) in the leaves of A. viridis ranged from 0.45 to 2.18 dry weight (dw) (0.05−0.26 wet weight (ww)), 74.8 to 535 dw (8.97−64.2 ww), 2.02 to 7.45 dw (0.24−0.89 ww), and 65.2 to 521 dw (7.83−62.6 ww), for Cd, Fe, Ni, and Zn, respectively. The positive relationships between the metals, the plant parts, and the geochemical factions of their habitat topsoils indicated the potential of A. viridis as a good biomonitor of Cd, Fe, and Ni pollution. With most of the values of the bioconcentration factor (BCF) > 1.0 and the transfer factor (TF) > 1.0, A. viridis was a very promising phytoextraction agent of Ni and Zn. Additionally, with most of the values of BCF > 1.0 and TF < 1.0, A. viridis was a very promising phytostabiliser of Cd and Fe. With respect to HHR, the target hazard quotients (THQ) for Cd, Fe, Pb, and Zn in the leaves of A. viridis were all below 1.00, indicating there were no non-carcinogenic risks of the four metals to consumers, including children and adults. Nevertheless, routine monitoring of PTMs in Amaranthus farms is much needed.

2.
Artículo en Inglés | MEDLINE | ID: mdl-33924835

RESUMEN

The invasive weed Asystasia gangetica was investigated for its potential as a biomonitor and as a phytoremediator of potentially toxic metals (PTMs) (Cd, Cu, Ni, Pb, and Zn) in Peninsular Malaysia owing to its ecological resistance towards unfavourable environments. The biomonitoring potential of PTMs was determined based on the correlation analysis of the metals in the different parts of the plant (leaves, stems, and roots) and its habitat topsoils. In the roots, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 2.18, 9.22 to 139, 0.63 to 5.47, 2.43 to 10.5, and 50.7 to 300, respectively. In the leaves, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 1.16, 7.94 to 20.2, 0.03 to 6.13, 2.10 to 21.8, and 18.8 to 160, respectively. In the stems, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 1.25, 5.57 to 11.8, 0.23 to 3.69, 0.01 to 7.79, and 26.4 to 246, respectively. On the other hand, the phytoremediation potential of the five metals was estimated based on the bioconcentration factor (BCF) and the translocation factor (TF) values. Correlation analysis revealed that the roots and stems could be used as biomonitors of Cu, the stems as biomonitors of Ni, the roots and leaves as biomonitors of Pb, and all three parts of the plant as biomonitors of Zn. According to the BCF values, in the topsoil, the "easily, freely, leachable, or exchangeable" geochemical fractions of the five metals could be more easily transferred to the roots, leaves, and stems when compared with total concentrations. Based on the TF values of Cd, Ni, and Pb, the metal transfer to the stems (or leaves) from the roots was efficient (>1.0) at most sampling sites. The results of BCF and TF showed that A. gangetica was a good phytoextractor for Cd and Ni, and a good phytostabilizer for Cu, Pb, and Zn. Therefore, A. gangetica is a good candidate as a biomonitor and a phytoremediator of Ni, Pb, and Zn for sustainable contaminant remediation subject to suitable field management strategies.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Monitoreo del Ambiente , Malasia , Metales Pesados/análisis , Metales Pesados/toxicidad , Malezas , Suelo , Contaminantes del Suelo/análisis
3.
Biology (Basel) ; 11(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35053001

RESUMEN

Human activities due to different land uses are being studied widely in many countries. This study aimed to determine the ecological risks and human health risk assessments (HHRA) of Cd, Pb, Ni, Cu, and Zn in the topsoils of six land uses in Peninsular Malaysia. The ranges of the potentially toxic metals (PTMs) in the soils (mg/kg, dry weight) of this study were 0.24-12.43 for Cd (mean: 1.94), 4.66-2363 for Cu (mean: 228), 2576-116,344 for Fe (mean: 32,618), 2.38-75.67 for Ni (mean: 16.04), 7.22-969 for Pb (mean: 115) and 11.03-3820 for Zn (mean: 512). For the ecological risk assessments, the potential ecological risk index (PERI) for single metals indicated that the severity of pollution of the five metals decreased in the following sequence: Cd > Cu > Pb > Zn > Ni. It was found that industry, landfill, rubbish heap, and mining areas were categorized as "very high ecological risk". For HHRA, the land uses of industry, landfill and rubbish heap were found to have higher hazard quotient (HQ) values for the three pathways (with the order: ingestion > dermal contact > inhalation ingestion) of the five metals for children and adults, when compared to the mining, plantation, and residential areas. The values for both the non-carcinogenic (Cd, Cu, Ni, and Zn), and carcinogenic risks (CR) for inhalation (Cd and Ni) obtained for children and adults in this study showed no serious adverse health impacts on their health. However, of public concern, the hazard index (HI), for Pb of children at the landfill (L-3) and the rubbish heap (RH-3) sites exceeded 1.0, indicating non-carcinogenic risk (NCR) for children. Therefore, these PERI and HHRA results provided fundamental data for PTMs pollution mitigation and environmental management in areas of different land uses in Peninsular Malaysia.

4.
Artículo en Inglés | MEDLINE | ID: mdl-33383875

RESUMEN

This study aimed to analyse ten trace metal concentrations in the edible part of the freshwater clam Corbicula javanica and to provide a critical assessment of the potential risks to human health through consumption of this clam as food based on well-established indices and food safety guidelines. The clams were captured from a pristine original site and transplanted to other sites with different environmental qualities. The trace metal levels in the edible total soft tissue (TST) of the clam were below those of the food safety guidelines referred to except for Pb, which exceeded the permissible limit set by the European Commission (2006) and the US Food and Drug Administration/ Center for Food Safety and Applied Nutrition); Interstate Shellfish Sanitation Conference. (USFDA/CFSAN; ISSC) (2007). The estimated daily intake (EDI) values of the clam were found to be lower than the oral reference dose and the calculated target hazard quotient (THQ) and total THQ were found to be less than 1. Therefore, in conclusion, the human health risk for consumption of TST of C. javanica at both average and high-level were insignificant regardless of the environment it was exposed to.


Asunto(s)
Corbicula , Contaminación de Alimentos/análisis , Metales Pesados , Medición de Riesgo , Alimentos Marinos , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Humanos , Malasia , Metales Pesados/análisis , Ríos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...