Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Complement Ther Clin Pract ; 49: 101640, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35868137

RESUMEN

Impetigo is a contagious skin disease caused by Staphylococcus aureus and Streptococcus pyogenes. Without treatment, impetigo may be recurrent, develop into severe disease, or have serious, life-threatening sequelae. Standard treatment consists of topical or systemic antibiotic therapy (depending on severity), however, due to antibiotic resistance some therapies are increasingly ineffective. In this study we evaluated the potential for honey as an alternative treatment for impetigo. A broth microdilution assay in 96-well microtitre trays was used to determine the minimum inhibitory concentrations (MICs) of six monofloral honeys (jarrah, marri, red bell, banksia, wandoo, and manuka), a multifloral honey and artificial honey against S. aureus (n = 10), S. pyogenes (n = 10), and coagulase-negative staphylococci (CoNS) (n = 10). The optical density (OD) of all microtitre tray wells was also determined before and after assay incubation to analyse whether sub-MIC growth inhibition occurred. Jarrah, marri, red bell, banksia, and manuka honeys were highly effective at inhibiting S. aureus and CoNS, with MIC50 values ranging from 4 to 8% w/v honey. S. pyogenes was also inhibited by these same honeys, albeit at higher concentrations (8-29% w/v). Wandoo and multifloral honeys had the least antibacterial activity with MICs of >30% (w/v) for all isolates. However, OD data indicated that sub-MIC concentrations of honey were still partially restricting bacterial growth. Our pre-clinical data indicate that honey may be a potential therapeutic agent for the routine treatment of mild impetigo, and we suggest that clinical trials would be appropriate to further investigate this.


Asunto(s)
Miel , Impétigo , Humanos , Miel/análisis , Staphylococcus aureus , Impétigo/tratamiento farmacológico , Australia , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias
2.
3 Biotech ; 11(5): 246, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33968589

RESUMEN

Helicobacter pylori (H. pylori) is known to cause several gastroduodenal diseases including chronic Gastritis, Peptic Ulcer disease and Gastric Cancer. Virulent genes of H. pylori like cagA, vacA are known to be responsible for the disease pathogenesis. However, these virulence genes are not always found to be associated with disease outcome in all populations around the world. Tumor necrosis factor alpha inducing protein tipα is a newly discovered virulence gene of H. pylori and is an inducer of certain cytokines and chemokines that are responsible for causing stomach cancer. Therefore, we conducted a study, which aims to find the prevalence of tipα gene in the Indian patients with gastroduodenal symptoms, and its association with H. pylori related gastroduodenal diseases. 267 clinical H. pylori isolates are included in our study for finding the prevalence of tipα gene and its association with cagA and vacA gene using PCR assay. The current study shows that the prevalence rate of tipα gene is 59.9%. Our study has found a significant association (p < 0.05) of tipα gene with Non Ulcer Dyspepsia (NUD) and an association of cagA and vacAs1m1 with Gastritis and Duodenal Ulcer. Our study demonstrates for the first time the presence of tipα as virulence factor of H. pylori strain in Indian population isolated from patients suffering from gastroduodenal diseases. Further, tipα is significantly associated with NUD but not with other gastroduodenal diseases in India.

3.
Indian J Med Microbiol ; 37(3): 337-344, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32003330

RESUMEN

Purpose: Helicobacter pylori causes various gastro-intestinal diseases. Antibiotic resistance to commonly used antibiotics for the treatment of H. pylori infection is the major cause for treatment failure. The aim of this study is to determine the antimicrobial susceptibility pattern for clarithromycin and levofloxacin and find the evolutionary relationship of the partial sequence of 23S rRNA and gyraseA gene of H. pylori by phylogenetic analysis. Materials and Methods: A total of 46 H. pylori strains were tested for clarithromycin and levofloxacin susceptibility pattern and phylogenetic tree were reconstructed by PhyML software. Results: In this study, we observed that only 6.5% of North-East Indian H. pylori strains were resistant for clarithromycin showing mutation at A2143G and T2182C positions of 23S rRNA gene. Resistance for levofloxacin was observed in 89.1% of the H. pylori strains showing mutations at asparagine to lysine at 87 and aspartic acid to glycine/tyrosine/asparagine at 91 positions of gyraseA gene. The phylogenetic tree of the partial sequence of 23S rRNA and gyraseA gene depicts that the North-East Indian strains falls in different cluster when compared to other countries. Conclusions: Resistance for clarithromycin was less in North-East Indian strains but high for levofloxacin indicating that first-line therapy may be best and effective for eradication of H. pylori in this region. This study is the first report that showed antibiotic susceptibility pattern for clarithromycin and levofloxacin by mutation analysis. By partial sequencing of 23s rRNA and gyraseA gene, we found that North-East Indian strains are geographically distinct.


Asunto(s)
Claritromicina/farmacología , Helicobacter pylori/efectos de los fármacos , Levofloxacino/farmacología , Farmacorresistencia Bacteriana/genética , Helicobacter pylori/genética , Pruebas de Sensibilidad Microbiana , Mutación/genética , Filogenia , ARN Ribosómico 23S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA