Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38768767

RESUMEN

BACKGROUND: This phase 1/2 study evaluates the safety and preliminary efficacy of combining disulfiram and copper (DSF/Cu) with radiation therapy (RT) and temozolomide (TMZ) in patients with newly diagnosed glioblastoma (GBM). METHODS: Patients received standard RT and TMZ with DSF (250-375 mg daily) and Cu, followed by adjuvant TMZ plus DSF (500 mg/day) and Cu. Pharmacokinetic analyses determined drug concentrations in plasma and tumors using high-performance liquid chromatography-mass spectrometry. RESULTS: Thirty-three patients, with a median follow-up of 26.0 months, were treated, including 12 IDH-mutant, 9 NF1-mutant, 3 BRAF-mutant, and 9 other IDH-wildtype cases. In the phase-1 arm, 18 patients were treated; dose-limiting toxicity (DLT) probabilities were 10% (95% CI: 3-29%) at 250 mg/day and 21% (95% CI: 7-42%) at 375 mg/day. The phase 2 arm treated 15 additional patients at 250 mg/day. No significant difference in overall survival or progression-free survival were noted between IDH-mutant and NF1-mutant cohorts compared to institutionally counterparts treated without DSF/Cu. However, extended remission occurred in three BRAF-mutant patients. Diethyl-dithiocarbamate-copper, the proposed active metabolite of DSF/Cu, was detected in plasma but not in tumors. CONCLUSIONS: The maximum tolerated dose of DSF with RT and TMZ is 375 mg/day. DSF/Cu showed limited clinical efficacy for most patients. However, promising efficacy was observed in BRAF-mutant GBM, warranting further investigation.

2.
Nature ; 623(7986): 432-441, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914932

RESUMEN

Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias , Humanos , Hipoxia de la Célula , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Transición Epitelial-Mesenquimal , Estrógenos/metabolismo , Perfilación de la Expresión Génica , Proteínas Activadoras de GTPasa/metabolismo , Metástasis de la Neoplasia , Neoplasias/clasificación , Neoplasias/genética , Neoplasias/patología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
3.
J Neurooncol ; 164(2): 309-320, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37668941

RESUMEN

PURPOSE: Glioblastoma (GBM) is the most common and aggressive malignant glioma, with an overall median survival of less than two years. The ability to predict survival before treatment in GBM patients would lead to improved disease management, clinical trial enrollment, and patient care. METHODS: GBM patients (N = 133, mean age 60.8 years, median survival 14.1 months, 57.9% male) were retrospectively recruited from the neurosurgery brain tumor service at Washington University Medical Center. All patients completed structural neuroimaging and resting state functional MRI (RS-fMRI) before surgery. Demographics, measures of cortical thickness (CT), and resting state functional network connectivity (FC) were used to train a deep neural network to classify patients based on survival (< 1y, 1-2y, >2y). Permutation feature importance identified the strongest predictors of survival based on the trained models. RESULTS: The models achieved a combined cross-validation and hold out accuracy of 90.6% in classifying survival (< 1y, 1-2y, >2y). The strongest demographic predictors were age at diagnosis and sex. The strongest CT predictors of survival included the superior temporal sulcus, parahippocampal gyrus, pericalcarine, pars triangularis, and middle temporal regions. The strongest FC features primarily involved dorsal and inferior somatomotor, visual, and cingulo-opercular networks. CONCLUSION: We demonstrate that machine learning can accurately classify survival in GBM patients based on multimodal neuroimaging before any surgical or medical intervention. These results were achieved without information regarding presentation symptoms, treatments, postsurgical outcomes, or tumor genomic information. Our results suggest GBMs have a global effect on the brain's structural and functional organization, which is predictive of survival.


Asunto(s)
Glioblastoma , Humanos , Masculino , Persona de Mediana Edad , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Aprendizaje Automático
4.
Neurooncol Adv ; 5(1): vdad088, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554225

RESUMEN

Background: Myeloid-derived suppressor cells (MDSCs) are critical regulators of immunosuppression and radioresistance in glioblastoma (GBM). The primary objective of this pilot phase Ib study was to validate the on-target effect of tadalafil on inhibiting MDSCs in peripheral blood and its safety when combined with chemoradiotherapy in GBM patients. Methods: Patients with newly diagnosed IDH-wild-type GBM received radiation therapy (RT) and temozolomide (TMZ) combined with oral tadalafil for 2 months. A historical cohort of 12 GBM patients treated with RT and TMZ was used as the comparison group. The ratio of MDSCs, T cells, and cytokines at week 6 of RT compared to baseline were analyzed using flow cytometry. Progression-free survival (PFS) and overall survival (OS) were estimated by the Kaplan-Meier method. Results: Tadalafil was well tolerated with no dose-limiting toxicity among 16 evaluable patients. The tadalafil cohort had a significantly lower ratio of circulating MDSCs than the control: granulocytic-MDSCs (mean 0.78 versus 3.21, respectively, P = 0.01) and monocytic-MDSCs (1.02 versus 1.96, respectively, P = 0.006). Tadalafil increased the CD8 ratio compared to the control (1.99 versus 0.70, respectively, P < 0.001), especially the PD-1-CD8 T cells expressing Ki-67, CD38, HLA-DR, CD28, and granzyme B. Proinflammatory cytokine IL-1ß was also significantly increased after tadalafil compared to the control. The tadalafil cohort did not have significantly different PFS and OS than the historical control. Conclusions: Concurrent tadalafil is well tolerated during chemoradiotherapy for GBM. Tadalafil is associated with a reduction of peripheral MDSCs after chemoradiotherapy and increased CD8 T-cell proliferation and activation.

5.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37582357

RESUMEN

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Neoplasias/genética , Oncogenes , Transformación Celular Neoplásica/genética , Variaciones en el Número de Copia de ADN
7.
Nat Commun ; 14(1): 2876, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208361

RESUMEN

Tumors are comprised of a multitude of cell types spanning different microenvironments. Mass spectrometry imaging (MSI) has the potential to identify metabolic patterns within the tumor ecosystem and surrounding tissues, but conventional workflows have not yet fully integrated the breadth of experimental techniques in metabolomics. Here, we combine MSI, stable isotope labeling, and a spatial variant of Isotopologue Spectral Analysis to map distributions of metabolite abundances, nutrient contributions, and metabolic turnover fluxes across the brains of mice harboring GL261 glioma, a widely used model for glioblastoma. When integrated with MSI, the combination of ion mobility, desorption electrospray ionization, and matrix assisted laser desorption ionization reveals alterations in multiple anabolic pathways. De novo fatty acid synthesis flux is increased by approximately 3-fold in glioma relative to surrounding healthy tissue. Fatty acid elongation flux is elevated even higher at 8-fold relative to surrounding healthy tissue and highlights the importance of elongase activity in glioma.


Asunto(s)
Ecosistema , Glioblastoma , Animales , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Metabolómica/métodos , Glioblastoma/diagnóstico por imagen , Ácidos Grasos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Microambiente Tumoral
8.
Nat Commun ; 14(1): 1681, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973268

RESUMEN

Identifying tumor-cell-specific markers and elucidating their epigenetic regulation and spatial heterogeneity provides mechanistic insights into cancer etiology. Here, we perform snRNA-seq and snATAC-seq in 34 and 28 human clear cell renal cell carcinoma (ccRCC) specimens, respectively, with matched bulk proteogenomics data. By identifying 20 tumor-specific markers through a multi-omics tiered approach, we reveal an association between higher ceruloplasmin (CP) expression and reduced survival. CP knockdown, combined with spatial transcriptomics, suggests a role for CP in regulating hyalinized stroma and tumor-stroma interactions in ccRCC. Intratumoral heterogeneity analysis portrays tumor cell-intrinsic inflammation and epithelial-mesenchymal transition (EMT) as two distinguishing features of tumor subpopulations. Finally, BAP1 mutations are associated with widespread reduction of chromatin accessibility, while PBRM1 mutations generally increase accessibility, with the former affecting five times more accessible peaks than the latter. These integrated analyses reveal the cellular architecture of ccRCC, providing insights into key markers and pathways in ccRCC tumorigenesis.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Transcriptoma , Epigénesis Genética , Proteínas Supresoras de Tumor/genética , Regulación Neoplásica de la Expresión Génica
9.
Support Care Cancer ; 31(4): 213, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36917417

RESUMEN

PURPOSE: To determine how participation in daily life is impacted during the first six months following a new cancer diagnosis and to identify risk factors for participation restrictions. Patient-reported outcomes (PROs) were used to suggest referrals to rehabilitation services. METHODS: Participants (n = 123) were adults (> 18 years) with the newly diagnosed primary brain, breast, colorectal, or lung cancer. PROs were collected at baseline (within 30 days of diagnosis/treatment initiation), two and five months post baseline. Daily life participation was assessed through the community participation indicators (CPI) (score range: 0-1) and patient-reported outcome measurement information system (PROMIS) ability to participate, (score range: 20-80; mean: 50, SD: 10). PROMIS-43 profile was also completed. Linear mixed-effect models with random intercept evaluated change in participation over time. RESULTS: The baseline total sample mean CPI score was 0.56; patients reported mildly impaired participation based on PROMIS scores (baseline: 46.19, 2-month follow-up: 44.81, 5 months: 44.84). However, no statistically significant changes in participation were observed over the study period. Risk factors for lower participation included receiving chemotherapy, lower physical function, higher anxiety and fatigue, and reduction in employment, p < 0.05. PROs indicated that roughly half of the participants may benefit from physical or occupational therapy or mental health support, but only 20-36% were referred by their medical team. CONCLUSION: People newly diagnosed with cancer experience impaired participation, but they are infrequently referred to supportive services such as rehabilitation. The use of PROs to assess participation, physical function, and mental health can promote access to supportive care services by identifying patients who may benefit from rehabilitation beyond those identified through routine clinical care.


Asunto(s)
Neoplasias , Calidad de Vida , Adulto , Humanos , Estudios Longitudinales , Salud Mental , Neoplasias/terapia , Ansiedad/etiología
10.
J Natl Compr Canc Netw ; 21(1): 12-20, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634606

RESUMEN

The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of the following adult CNS cancers: glioma (WHO grade 1, WHO grade 2-3 oligodendroglioma [1p19q codeleted, IDH-mutant], WHO grade 2-4 IDH-mutant astrocytoma, WHO grade 4 glioblastoma), intracranial and spinal ependymomas, medulloblastoma, limited and extensive brain metastases, leptomeningeal metastases, non-AIDS-related primary CNS lymphomas, metastatic spine tumors, meningiomas, and primary spinal cord tumors. The information contained in the algorithms and principles of management sections in the NCCN Guidelines for CNS Cancers are designed to help clinicians navigate through the complex management of patients with CNS tumors. Several important principles guide surgical management and treatment with radiotherapy and systemic therapy for adults with brain tumors. The NCCN CNS Cancers Panel meets at least annually to review comments from reviewers within their institutions, examine relevant new data from publications and abstracts, and reevaluate and update their recommendations. These NCCN Guidelines Insights summarize the panel's most recent recommendations regarding molecular profiling of gliomas.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Adulto , Humanos , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Sistema Nervioso Central , Mutación
11.
Cancer Cell ; 40(12): 1448-1453, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36270276

RESUMEN

3D patient tumor avatars (3D-PTAs) hold promise for next-generation precision medicine. Here, we describe the benefits and challenges of 3D-PTA technologies and necessary future steps to realize their potential for clinical decision making. 3D-PTAs require standardization criteria and prospective trials to establish clinical benefits. Innovative trial designs that combine omics and 3D-PTA readouts may lead to more accurate clinical predictors, and an integrated platform that combines diagnostic and therapeutic development will accelerate new treatments for patients with refractory disease.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Medicina de Precisión , Estudios Prospectivos , Oncología Médica
12.
Neurooncol Pract ; 9(3): 193-200, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35601970

RESUMEN

Background: Gliomas are the most common primary brain tumor in adults. Current treatments involve surgery, radiation, and temozolomide (TMZ) chemotherapy; however, prognosis remains poor and new approaches are required. Circadian medicine aims to maximize treatment efficacy and/or minimize toxicity by timed delivery of medications in accordance with the daily rhythms of the patient. We published a retrospective study showing greater anti-tumor efficacy for the morning, relative to the evening, administration of TMZ in patients with glioblastoma. We conducted this prospective randomized trial to determine the feasibility, and potential clinical impact, of TMZ chronotherapy in patients with gliomas (NCT02781792). Methods: Adult patients with gliomas (WHO grade II-IV) were enrolled prior to initiation of monthly TMZ therapy and were randomized to receive TMZ either in the morning (AM) before 10 am or in the evening (PM) after 8 pm. Pill diaries were recorded to measure compliance and FACT-Br quality of life (QoL) surveys were completed throughout treatment. Study compliance, adverse events (AE), and overall survival were compared between the two arms. Results: A total of 35 evaluable patients, including 21 with GBM, were analyzed (18 AM patients and 17 PM patients). Compliance data demonstrated the feasibility of timed TMZ dosing. There were no significant differences in AEs, QoL, or survival between the arms. Conclusions: Chronotherapy with TMZ is feasible. A larger study is needed to validate the effect of chronotherapy on clinical efficacy.

14.
Clin Cancer Res ; 28(6): 1229-1239, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35031547

RESUMEN

PURPOSE: Patients with glioblastoma (GBM) are treated with radiotherapy (RT) and temozolomide (TMZ). These treatments may cause prolonged systemic lymphopenia, which itself is associated with poor outcomes. NT-I7 is a long-acting IL7 that expands CD4 and CD8 T-cell numbers in humans and mice. We tested whether NT-I7 prevents systemic lymphopenia and improves survival in mouse models of GBM. EXPERIMENTAL DESIGN: C57BL/6 mice bearing intracranial tumors (GL261 or CT2A) were treated with RT (1.8 Gy/day × 5 days), TMZ (33 mg/kg/day × 5 days), and/or NT-I7 (10 mg/kg on the final day of RT). We followed the mice for survival while serially analyzing levels of circulating T lymphocytes. We assessed regulatory T cells (Treg) and cytotoxic T lymphocytes in the tumor microenvironment, cervical lymph nodes, spleen, and thymus, and hematopoietic stem and progenitor cells in the bone marrow. RESULTS: GBM tumor-bearing mice treated with RT+NT-I7 increased T lymphocytes in the lymph nodes, thymus, and spleen, enhanced IFNγ production, and decreased Tregs in the tumor which was associated with a significant increase in survival. NT-I7 also enhanced central memory and effector memory CD8 T cells in lymphoid organs and tumor. Depleting CD8 T cells abrogated the effects of NT-I7. Furthermore, NT-I7 treatment decreased progenitor cells in the bone marrow. CONCLUSIONS: In orthotopic glioma-bearing mice, NT-I7 mitigates RT-related lymphopenia, increases cytotoxic CD8 T lymphocytes systemically and in the tumor, and improves survival. A phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Linfopenia , Animales , Neoplasias Encefálicas/patología , Linfocitos T CD8-positivos , Línea Celular Tumoral , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Modelos Animales de Enfermedad , Glioma/patología , Humanos , Factores Inmunológicos/farmacología , Interleucina-7 , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión , Linfocitos T Citotóxicos/patología , Temozolomida/farmacología , Microambiente Tumoral
15.
Neurooncol Adv ; 4(1): vdab186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35088051

RESUMEN

BACKGROUND: Glioblastoma (GBM) has a 5-year survival rate of 3%-5%. GBM treatment includes maximal resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ). Cytochrome C oxidase (CcO) is a mitochondrial enzyme involved in the mechanism of resistance to TMZ. In a prior retrospective trial, CcO activity in GBMs inversely correlated with clinical outcome. The current Cyto-C study was designed to prospectively evaluate and validate the prognostic value of tumor CcO activity in patients with newly diagnosed primary GBM, and compared to the known prognostic value of MGMT promoter methylation status. METHODS: This multi-institutional, blinded, prospective biomarker study enrolled 152 patients with newly diagnosed GBM who were to undergo surgical resection and would be candidates for standard of care. The primary end point was overall survival (OS) time, and the secondary end point was progression-free survival (PFS) time. Tumor CcO activity and MGMT promoter methylation status were assayed in a centralized laboratory. RESULTS: OS and PFS did not differ by high or low tumor CcO activity, and the prognostic validity of MGMT promoter methylation was confirmed. Notably, a planned exploratory analysis suggested that the combination of low CcO activity and MGMT promoter methylation in tumors may be predictive of long-term survival. CONCLUSIONS: Tumor CcO activity alone was not confirmed as a prognostic marker in GBM patients. However, the combination of low CcO activity and methylated MGMT promoter may reveal a subgroup of GBM patients with improved long-term survival that warrants further evaluation. Our work also demonstrates the importance of performing large, multi-institutional, prospective studies to validate biomarkers. We also discuss lessons learned in assembling such studies.

16.
Neurooncol Adv ; 3(1): vdab081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34345818

RESUMEN

BACKGROUND: Optimal management for recurrent IDH-mutant glioma after radiation therapy (RT) is not well-defined. This study assesses practice patterns for managing recurrent IDH-mutant astrocytoma (Astro) and 1p/19q codeleted oligodendroglioma (Oligo) after RT and surveys their clinical outcomes after different salvage approaches. METHODS: Ninety-four recurrent Astro or Oligo patients after RT who received salvage systemic therapy (SST) between 2001 and 2019 at a tertiary cancer center were retrospectively analyzed. SST was defined as either alkylating chemotherapy (AC) or nonalkylating therapy (non-AC). Overall survival (OS) and progression-free survival (PFS) were calculated using the Kaplan-Meier method from the start of SST. Multivariable analysis (MVA) was conducted using Cox regression analysis. RESULTS: Recurrent Oligo (n = 35) had significantly higher PFS (median: 3.1 vs 0.8 years, respectively, P = .002) and OS (median: 6.3 vs 1.5 years, respectively, P < .001) than Astro (n = 59). Overall, 90% of recurrences were local. Eight-three percent received AC as the first-line SST; 50% received salvage surgery before SST; approximately 50% with local failure >2 years after prior RT received reirradiation. On MVA, non-AC was associated with worse OS for both Oligo and Astro; salvage surgery was associated with improved PFS and OS for Astro; early reirradiation was associated with improved PFS for Astro. CONCLUSIONS: Recurrent radiation-relapsed IDH-mutant gliomas represent a heterogeneous group with variable treatment approaches. Surgery, AC, and reirradiation remain the mainstay of salvage options for retreatment.

17.
Neurooncol Adv ; 3(1): vdab035, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34007966

RESUMEN

BACKGROUND: It remains unknown how the COVID-19 pandemic has changed neuro-oncology clinical practice, training, and research efforts. METHODS: We performed an international survey of practitioners, scientists, and trainees from 21 neuro-oncology organizations across 6 continents, April 24-May 17, 2020. We assessed clinical practice and research environments, institutional preparedness and support, and perceived impact on patients. RESULTS: Of 582 respondents, 258 (45%) were US-based and 314 (55%) international. Ninety-four percent of participants reported changes in their clinical practice. Ninety-five percent of respondents converted at least some practice to telemedicine. Ten percent of practitioners felt the need to see patients in person, specifically because of billing concerns and pressure from their institutions. Sixty-seven percent of practitioners suspended enrollment for at least one clinical trial, including 62% suspending phase III trial enrollments. More than 50% believed neuro-oncology patients were at increased risk for COVID-19. Seventy-one percent of clinicians feared for their own personal safety or that of their families, specifically because of their clinical duties; 20% had inadequate personal protective equipment. While 69% reported increased stress, 44% received no psychosocial support from their institutions. Thirty-seven percent had salary reductions and 63% of researchers temporarily closed their laboratories. However, the pandemic created positive changes in perceived patient satisfaction, communication quality, and technology use to deliver care and mediate interactions with other practitioners. CONCLUSIONS: The pandemic has changed treatment schedules and limited investigational treatment options. Institutional lack of support created clinician and researcher anxiety. Communication with patients was satisfactory. We make recommendations to guide clinical and scientific infrastructure moving forward and address the personal challenges of providers and researchers.

18.
Neurosurgery ; 89(1): 129-132, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33862619

RESUMEN

Patients with glioblastoma (GBM) need bold new approaches to their treatment, yet progress has been hindered by a relative inability to dynamically track treatment response, mechanisms of resistance, evolution of targetable mutations, and changes in mutational burden. We are writing on behalf of a multidisciplinary group of academic neuro-oncology professionals who met at the collaborative Christopher Davidson Forum at Washington University in St Louis in the fall of 2019. We propose a dramatic but necessary change to the routine management of patients with GBM to advance the field: to routinely biopsy recurrent GBM at the time of presumed recurrence. Data derived from these samples will identify true recurrence vs treatment effect, avoid treatments with little chance of success, enable clinical trial access, and aid in the scientific advancement of our understanding of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Biopsia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Mutación , Recurrencia Local de Neoplasia/diagnóstico
19.
JCI Insight ; 6(4)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33400685

RESUMEN

Most patients with glioblastoma (GBM) die within 2 years. A major therapeutic goal is to target GBM stem cells (GSCs), a subpopulation of cells that contribute to treatment resistance and recurrence. Since their discovery in 2003, GSCs have been isolated using single-surface markers, such as CD15, CD44, CD133, and α6 integrin. It remains unknown how these single-surface marker-defined GSC populations compare with each other in terms of signaling and function and whether expression of different combinations of these markers is associated with different functional capacity. Using mass cytometry and fresh operating room specimens, we found 15 distinct GSC subpopulations in patients, and they differed in their MEK/ERK, WNT, and AKT pathway activation status. Once in culture, some subpopulations were lost and previously undetectable ones materialized. GSCs that highly expressed all 4 surface markers had the greatest self-renewal capacity, WNT inhibitor sensitivity, and in vivo tumorigenicity. This work highlights the potential signaling and phenotypic diversity of GSCs. Larger patient sample sizes and antibody panels are required to confirm these findings.


Asunto(s)
Neoplasias Encefálicas/genética , Heterogeneidad Genética , Glioblastoma/genética , Células Madre Neoplásicas/metabolismo , Antígeno AC133 , Animales , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/inmunología , Humanos , Receptores de Hialuranos , Antígeno Lewis X , Ratones
20.
Neurooncol Adv ; 3(1): vdab164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34988450

RESUMEN

BACKGROUND: The blood-brain barrier (BBB) is a major limiting factor for drug delivery in brain tumors. Laser interstitial thermal therapy (LITT) disrupts the peritumoral BBB. In this study, we examine survival in patients with recurrent glioblastoma (GBM) treated with LITT followed by low-dose doxorubicin, a potent anti-neoplastic drug with poor BBB permeability. METHODS: Forty-one patients with recurrent GBM were enrolled; thirty patients were evaluable. Participants underwent LITT followed by 6 weekly doxorubicin treatments starting within one week (Early Arm) or at 6-8 weeks (Late Arm) after LITT. The overall survival (OS), local progression-free survival (PFS), and any PFS were compared to historical controls treated with bevacizumab salvage therapy (n = 50) or LITT with standard BBB-permeable salvage therapy (n = 28). Cox proportional-hazards models examined the contribution of age, gender, MGMT promoter status, and IDH-mutation status on any PFS and OS. Adverse events were also cataloged. RESULTS: The Late Arm and all patients (Early Arm + Late Arm) demonstrated significant improvement in OS compared to historical controls treated with bevacizumab (p < 0.001) and LITT with standard salvage therapy (p < 0.05). No significant difference in any PFS was observed between either arm and historical controls. Low-dose doxorubicin was well tolerated with comparable adverse event rates between the arms. CONCLUSIONS: Low-dose doxorubicin given after LITT is well tolerated and correlated with higher OS compared to historical controls treated with bevacizumab or LITT with standard salvage chemotherapy. A larger study is needed to further characterize survival and progression patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...