Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Mol Pharm ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771015

RESUMEN

Extracellular vesicle (EV) research is rapidly advancing from fundamental science to translational applications in EV-based personalized therapeutics and diagnostics. Yet, fundamental questions persist regarding EV biology and mechanisms, particularly concerning the heterogeneous interactions between EVs and cells. While we have made strides in understanding virus delivery and intracellular vesicle transport, our comprehension of EV trafficking remains limited. EVs are believed to mediate intercellular communication through cargo transfer, but uncertainties persist regarding the occurrence and quantification of EV-cargo delivery within acceptor cells. This ambiguity is crucial to address, given the significant translational impact of EVs on therapeutics and diagnostics. This perspective article does not seek to provide exhaustive recommendations and guidance on EV-related studies, as these are well-articulated in position papers and statements by the International Society for Extracellular Vesicles (ISEV), including the 'Minimum Information for Studies of Extracellular Vesicles' (MISEV) 2014, MISEV2018, and the recent MISEV2023. Instead, recognizing the multilayered heterogeneity of EVs as both a challenge and an opportunity, this perspective emphasizes novel approaches to facilitate our understanding of diverse EV biology, address uncertainties, and leverage this knowledge to advance EV-based personalized diagnostics and therapeutics. Specifically, this perspective synthesizes current insights, identifies opportunities, and highlights exciting technological advancements in ultrasensitive single EV or "digital" profiling developed within the author's multidisciplinary group. These newly developed technologies address technical gaps in dissecting the molecular contents of EV subsets, contributing to the evolution of EVs as next-generation liquid biopsies for diagnostics and providing better quality control for EV-based therapeutics.

2.
Haematologica ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572551

RESUMEN

Patients with sickle cell disease (SCD) display lower slope coefficients of the oxygen uptake (V_O2) vs. work rate (W) relationship (delineating an O2 uptake/demand mismatch) and a poor metabolic flexibility. Because endurance training (ET) increases the microvascular network and oxidative enzymes activity including one involved in lipid oxidation, ET might improve the slope coefficient of the V_O2 vs. W curve and the metabolic flexibility of SCD patients. ET may also contribute to improve patient post-exercise cardiopulmonary and metabolic recovery. Fifteen patients with SCD performed a submaximal incremental test on a cycle ergometer before (SIT1) and after (SIT2) 8 weeks of ET. Minute ventilation, ventilation rate (VR), heart rate (HR), V_O2, CO2 production, respiratory exchange ratio, carbohydrate/lipid utilization and partitioning (including %Lipidox) and blood lactate concentration ([lactate]b) were measured during and after SIT1 and SIT2. At baseline, the slope coefficient of the V_O2 vs. W curve positively correlated with total hemoglobin, mean corpuscular hemoglobin and percentage of HbF. After training, the slope coefficient of the V_O2 vs. W curve was significantly higher and the [lactate]b increase was delayed. If patients' energy metabolism apparently relied largely on carbohydrate sources during SIT1, %Lipidox tended to increase at low exercise intensities during SIT2, supporting a training-induced improvement of metabolic flexibility in patients with SCD. Post-exercise recovery of VR, V_E/V_CO2, HR and [lactate]b was faster after training. We concluded that ET in patients with SCD i) ameliorated the oxygen uptake/demand mismatch, ii) blunted the metabolic inflexibility, and iii) improved post-exercise cardiopulmonary and metabolic responses.

3.
Anal Chem ; 96(17): 6836-6846, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640495

RESUMEN

Isobaric labeling is widely used for unbiased, proteome-wide studies, and it provides several advantages, such as fewer missing values among samples and higher quantitative precision. However, ion interference may lead to compressed or distorted observed ratios due to the coelution and coanalysis of peptides. Here, we introduced a synthetic KnockOut standard (sKO) for evaluating interference in tandem mass tags-based proteomics. sKO is made by mixing TMTpro-labeled tryptic peptides derived from four nonhuman proteins and a whole human proteome as background at different proportions. We showcased the utility of the sKO standard by exploring ion interference at different peptide concentrations (up to a 30-fold change in abundance) and using a variety of mass spectrometer data acquisition strategies. We also demonstrated that the sKO standard could provide valuable information for the rational design of acquisition strategies to achieve optimal data quality and discussed its potential applications for high-throughput proteomics workflows development.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Humanos , Animales , Péptidos/análisis , Péptidos/química , Proteoma/análisis
4.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542241

RESUMEN

As the population ages, the number of patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA) continues to increase. Infections after primary arthroplasty are rare but have high rates of morbidity and mortality, as well as enormous financial implications for healthcare systems. Numerous methods including the use of superhydrophobic coatings, the incorporation of antibacterial agents, and the application of topographical treatments have been developed to reduce bacterial attachment to medical devices. However, most of these methods require complex manufacturing processes. Thus, the main purpose of this study was to apply biocoatings to titanium (Ti) surfaces to increase their infection resistance and osteoconductivity via simple processes, without organic reagents. We modified titanium surfaces with a combination of aminomalononitrile (AMN) and an antibiotic-loaded mesoporous bioactive glass (MBG) and evaluated both the antibacterial effects of the coating layer and its effect on osteoblast proliferation and differentiation. The properties of the modified surface, such as the hydrophilicity, roughness, and surface morphology, were characterized via contact angle measurements, atomic force microscopy, and scanning electron microscopy. The cell proliferation reagent WST-1 assay and the alkaline phosphatase (ALP) assay were used to determine the degrees of adhesion and differentiation, respectively, of the MG-63 osteoblast-like cells on the surface. Antimicrobial activity was evaluated by examining the survival rate and inhibition zone of Escherichia coli (E. coli). The AMN coating layer reduced the water contact angle (WCA) of the titanium surface from 87° ± 2.5° to 53° ± 2.3° and this change was retained even after immersion in deionized water for five weeks, demonstrating the stability of the AMN coating. Compared with nontreated titanium and polydopamine (PDA) coating layers, the AMN surface coating increased MG-63 cell attachment, spreading, and early ALP expression; reduced E. coli adhesion; and increased the percentage of dead bacteria. In addition, the AMN coating served as an adhesion layer for the subsequent deposition of MBG-containing antibiotic nanoparticles. The synergistic effects of the AMN layer and antibiotics released from the MBG resulted in an obvious E. coli inhibition zone that was not observed in the nontreated titanium group.


Asunto(s)
Escherichia coli , Titanio , Humanos , Titanio/farmacología , Titanio/química , Propiedades de Superficie , Antibacterianos/farmacología , Antibacterianos/química , Interacciones Hidrofóbicas e Hidrofílicas , Bacterias , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Osteoblastos
5.
Biomedicines ; 12(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540313

RESUMEN

Though tremendous advances have been made in the field of in vitro fertilization (IVF), a portion of patients are still affected by embryo implantation failure issues. One of the most significant factors contributing to implantation failure is a uterine condition called displaced window of implantation (WOI), which refers to an unsynchronized endometrium and embryo transfer time for IVF patients. Previous studies have shown that microRNAs (miRNAs) can be important biomarkers in the reproductive process. In this study, we aim to develop a miRNA-based classifier to identify the WOI for optimal time for embryo transfer. A reproductive-related PanelChip® was used to obtain the miRNA expression profiles from the 200 patients who underwent IVF treatment. In total, 143 out of the 167 miRNAs with amplification signals across 90% of the expression profiles were utilized to build a miRNA-based classifier. The microRNA-based classifier identified the optimal timing for embryo transfer with an accuracy of 93.9%, a sensitivity of 85.3%, and a specificity of 92.4% in the training set, and an accuracy of 88.5% in the testing set, showing high promise in accurately identifying the WOI for the optimal timing for embryo transfer.

6.
Oncoimmunology ; 13(1): 2300882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38192443

RESUMEN

Myeloid cells are known to play a crucial role in creating a tumor-promoting and immune suppressive microenvironment. Our previous study demonstrated that primary human monocytes can be polarized into immunosuppressive myeloid-derived suppressor cells (MDSCs) by cancer-associated fibroblasts (CAFs) in a 3D co-culture system. However, the molecular mechanisms underlying the immunosuppressive function of MDSCs, especially CAF-induced MDSCs, remain poorly understood. Using mass spectrometry-based proteomics, we compared cell surface protein changes among monocytes, in vitro differentiated CAF-induced MDSCs, M1/M2 macrophages, and dendritic cells, and identified an extracellular vesicle (EV)-mediated secretory phenotype of MDSCs. Functional assays using an MDSC/T-cell co-culture system revealed that blocking EV generation in CAF-induced MDSCs reversed their ability to suppress T-cell proliferation, while EVs isolated from CAF-induced MDSCs directly inhibited T-cell function. Furthermore, we identified fructose bisphosphatase 1 (FBP1) as a cargo protein that is highly enriched in EVs isolated from CAF-induced MDSCs, and pharmacological inhibition of FBP1 partially reversed the suppressive phenotype of MDSCs. Our findings provide valuable insights into the cell surface proteome of different monocyte-derived myeloid subsets and uncover a novel mechanism underlying the interplay between CAFs and myeloid cells in shaping a tumor-permissive microenvironment.


Asunto(s)
Fibroblastos Asociados al Cáncer , Vesículas Extracelulares , Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Linfocitos T , Microambiente Tumoral
7.
Acad Radiol ; 31(3): 939-950, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37714718

RESUMEN

RATIONALE AND OBJECTIVES: To evaluate the association between positron emission tomography (PET)/magnetic resonance imaging (MRI) biomarkers and survival outcomes in patients with endometrial cancer. MATERIALS AND METHODS: Between April 2014 and April 2016, 88 patients with newly diagnosed endometrial cancer participated this prospective study and underwent [18F] fluorodeoxyglucose PET/MRI. Sixty-nine patients with measurable tumors on PET/MRI were included in the image analysis. Imaging biomarkers included the minimum and mean apparent diffusion coefficients (ADCmin and ADCmean), maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of the primary tumors. The log-rank test and Cox proportional hazards model were used to assess the relationship between imaging biomarkers and survival. RESULTS: After a median follow-up of 80 months, 15 (22%) patients had tumor progression and six (9%) patients died. The results of ADCmin, ADCmean, and SUVmax did not show a significant association with progression-free survival (PFS) and overall survival (OS). Significantly shorter PFS was noted in patients with primary tumors with higher MTV (P < 0.001) and TLG (P < 0.001). Significantly shorter OS was also noted in patients with primary tumors with higher MTV (P = 0.048) and TLG (P = 0.034). In the multivariate analysis, MTV was an independent predictor of PFS (hazard ratio = 10.84, P = 0.033). CONCLUSION: PET/MRI biomarkers, particularly MTV and TLG, are associated with PFS and OS in patients with endometrial cancer. MTV was an independent predictor of PFS.


Asunto(s)
Neoplasias Endometriales , Fluorodesoxiglucosa F18 , Humanos , Femenino , Radiofármacos , Estudios Prospectivos , Pronóstico , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Biomarcadores , Progresión de la Enfermedad , Neoplasias Endometriales/diagnóstico por imagen , Estudios Retrospectivos , Carga Tumoral , Tomografía Computarizada por Tomografía de Emisión de Positrones
8.
Adv Sci (Weinh) ; 11(3): e2304926, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984870

RESUMEN

Proteins localized on the surface or within the lumen of tumor-derived extracellular vesicles (EVs) play distinct roles in cancer progression. However, quantifying both populations of proteins within EVs has been hampered due to the limited sensitivity of the existing protein detection methods and inefficient EV isolation techniques. In this study, the eSimoa framework, an innovative approach enabling spatial decoding of EV protein biomarkers with unmatched sensitivity and specificity is presented. Using the luminal eSimoa pipeline, the absolute concentration of luminal RAS or KRASG12D proteins is released and measured, uncovering their prevalence in pancreatic tumor-derived EVs. The pulldown eSimoa pipeline measured absolute protein concentrations from low-abundance EV subpopulations. The eSimoa assays detected EVs in both PBS and plasma samples, confirming their applicability across diverse clinical sample types. Overall, the eSimoa framework offers a valuable tool to (1) detect EVs at concentrations as low as 105 EV mL-1 in plasma, (2) quantify absolute EV protein concentrations as low as fM, and (3) decode the spatial distribution of EV proteins. This study highlights the potential of eSimoa in identifying disease-specific EV protein biomarkers in clinical samples with minimal pre-purification, thereby driving advancements in clinical translation.


Asunto(s)
Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Neoplasias Pancreáticas/diagnóstico
9.
Sci Rep ; 13(1): 18493, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898696

RESUMEN

Over-distraction has been shown to be a risk factor for cage subsidence and postoperative neck pain after anterior cervical discectomy and fusion (ACDF). Biomechanical studies have demonstrated increased adjacent segment intradiscal pressure after ACDF. The purpose of this study is to determine if over-distraction of the index disc has an effect on adjacent segment pathology. A consecutive series of 145 patients who received primary ACDF for cervical degenerative pathologies from January 2010 to December 2017 were retrospectively reviewed. The patients were divided into: (1) Over-distraction group (postoperative-preoperative index disc height ≥ 2 mm), and (2) No-distraction group (postoperative-preoperative index disc height < 2 mm). Outcome measures included radiographic parameters, Japanese Orthopaedic Association (JOA) score, and incidences of cage subsidence, radiological and clinical adjacent segment pathologies (RASP and CASP) were compared between the two groups preoperatively, postoperatively, and at the final follow-up. The two groups were comparable with respect to age, follow-up length, JOA score, incidence of CASP, and radiographic parameters. The Over-distraction group (83 patients; 115 levels) had smaller preoperative index disc height (4.5 vs. 5.2 mm, p < 0.001), but taller postoperative index disc height (7.7 vs. 6.6 mm, p < 0.001) than No-distraction group (62 patients; 90 levels) Furthermore, significantly higher incidences of cage subsidence (47% vs. 31%, p = 0.04) and RASP (any progression: 48% vs. 15%, p < 0.001; progress ≥ 2 grades: 25% vs. 7%, p = 0.001) were observed in the Over-distraction group. The multivariate analysis indicated that over-distraction and multilevel fusion were independent risk factors for RASP. There were no clinical outcome differences between the Over-distraction group and the No-distraction group in ACDF. Over-distraction of the index level of ≥ 2 mm should be avoided because it significantly increases the incidences of RASP and cage subsidence.


Asunto(s)
Discectomía , Fusión Vertebral , Humanos , Resultado del Tratamiento , Estudios de Seguimiento , Estudios Retrospectivos , Discectomía/efectos adversos , Discectomía/métodos , Fusión Vertebral/efectos adversos , Fusión Vertebral/métodos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía
10.
Nutrients ; 15(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513631

RESUMEN

Lactate is known to play a central role in the link between glycolytic and mitochondrial oxidative metabolism, as well as to serve as a primary gluconeogenic precursor. Blood lactate concentration is sensitive to the metabolic state of tissues and organs as lactate rates of appearance and disposal/disappearance in the circulation rise and fall in response to physical exercise and other metabolic disturbances. The highest lactate flux rates have been measured during moderate intensity exercise in endurance-trained individuals who exhibit muscular and metabolic adaptations lending to superior oxidative capacity. In contrast, a diminished ability to utilize lactate is associated with poor metabolic fitness. Given these widespread implications in exercise performance and health, we discuss the concept of lactate metabolic clearance rate, which increases at the onset of exercise and, unlike flux rates, reaches a peak just below the power output associated with the maximal lactate steady state. The metabolic clearance rate is determined by both disposal rate and blood concentration, two parameters that are mutually interdependent and thus difficult to parse during steady state exercise studies. We review the evolution of the in vivo lactate clamp methodology to control blood lactate concentration and discuss its application in the investigation of whole-body lactate disposal capacities. In conclusion, we assert that the lactate clamp is a useful research methodology for examining lactate flux, in particular the factors that drive metabolic clearance rate.


Asunto(s)
Ácido Láctico , Consumo de Oxígeno , Humanos , Consumo de Oxígeno/fisiología , Tasa de Depuración Metabólica , Umbral Anaerobio/fisiología , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Resistencia Física/fisiología
11.
RSC Adv ; 13(21): 14685-14697, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37197682

RESUMEN

Although nanotechnologies have attractive attributes in cancer therapy, their full potential has yet to be realized due to challenges in their translation to clinical settings. The evaluation of cancer nanomedicine efficacy in preclinical in vivo studies is limited to tumor size and animal survival metrics, which do not provide adequate understanding of the nanomedicine's mechanism of action. To address this, we have developed an integrated pipeline called nanoSimoa that combines an ultrasensitive protein detection technique (Simoa) with cancer nanomedicine. As a proof-of concept, we assessed the therapeutic efficacy of an ultrasound-responsive mesoporous silica nanoparticle (MSN) drug delivery system on OVCAR-3 ovarian cancer cells using CCK-8 assays to evaluate cell viability and Simoa assays to measure IL-6 protein levels. The results demonstrated significant reductions in both IL-6 levels and cell viability following nanomedicine treatment. In addition, a Ras Simoa assay (limit of detection: 0.12 pM) was developed to detect and quantify Ras protein levels in OVCAR-3 cells, which are undetectable by commercial enzyme-linked immunosorbent assays (ELISA). These results suggest that nanoSimoa has the potential to guide the development of cancer nanomedicines and predict their behavior in vivo, making it a valuable tool for preclinical testing and accelerating the development of precision medicine if its generalizability is confirmed.

12.
J Med Ultrasound ; 31(1): 51-54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180624

RESUMEN

We report two cases of traumatic iliopsoas hemorrhage, without hemoperitoneum, initially detected by ultrasound. Flexion hip contracture in the first case and incomplete femoral nerve palsy in the second case alerted the sonographer to the possibility of traumatic iliopsoas hemorrhage. The first case involved a 54-year-old man who complained of progressive right flank pain and difficulty in walking after falling to the ground. The second case involved a 34-year-old man who complained of severe lower back pain and numbness and weakness of the left leg after a motorcycle accident. In both cases, iliopsoas hemorrhage was confirmed on subsequent multidetector computed tomography.

13.
Transplant Cell Ther ; 29(5): 337.e1-337.e5, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736784

RESUMEN

The role of donor and recipient Coronavirus disease 2019 (COVID-19) immunologic status pre-transplantation has not been fully investigated in allogeneic hematopoietic stem cell transplantation (HSCT) recipients. Given the poor immunogenicity to vaccines in this population and the serious outcomes of COVID-19, adoptive transfer of immunity may offer important insight into improving protection for this vulnerable population. In this study, we evaluated the role of adoptive transfer of immunity at 1 month post-transplantation and 6 months post-transplantation after vaccination of recipients, based on pre-transplantation severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and infection exposures of both recipient and donor. Using banked specimens from related donor allogeneic HSCT recipients and clinical data from both donors and recipients, anti-Spike (S) IgG titers were analyzed at 1, 3, and 6 months post-transplantation according to prior SARS-CoV-2 immunologic exposures. Recipients were excluded if they had received SARS-CoV-2 monoclonal antibodies or had infection in the first 6 months post-transplantation. Of the 53 recipient-donor pairs, 29 donors and 24 recipients had prior SARS-CoV-2 immunologic exposure. Recipient-donor pairs with no prior SARS-CoV-2 exposure (D0R0) had significantly lower anti-S IgG titers at 1 month compared to those with prior exposures (D1R1) (D0R0: median, 2.43 [interquartile range (IQR), .41 to 3.77]; D1R1: median, 8.42; IQR, 5.58 to 12.20]; P = .008). At 6 months, anti-S IgG titers were higher in recipients who were vaccinated at 3 months post-transplantation in the D1R1 cohort (median IgG, 148.34; IQR, 92.36 to 204.33) compared with the D0R0 cohort (median IgG, 38.74; IQR, 8.93 to 119.71). Current strategies should be optimized to enhance SARS-CoV-2 protection for HSCT recipients, including augmentation of the immune response for both donors and recipients prior to transplantation.


Asunto(s)
COVID-19 , Trasplante de Células Madre Hematopoyéticas , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación , Anticuerpos Antivirales , Inmunoglobulina G
14.
Mol Neurodegener ; 18(1): 13, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810097

RESUMEN

BACKGROUND: The protease BACE1 is a major drug target for Alzheimer's disease, but chronic BACE1 inhibition is associated with non-progressive cognitive worsening that may be caused by modulation of unknown physiological BACE1 substrates. METHODS: To identify in vivo-relevant BACE1 substrates, we applied pharmacoproteomics to non-human-primate cerebrospinal fluid (CSF) after acute treatment with BACE inhibitors. RESULTS: Besides SEZ6, the strongest, dose-dependent reduction was observed for the pro-inflammatory cytokine receptor gp130/IL6ST, which we establish as an in vivo BACE1 substrate. Gp130 was also reduced in human CSF from a clinical trial with a BACE inhibitor and in plasma of BACE1-deficient mice. Mechanistically, we demonstrate that BACE1 directly cleaves gp130, thereby attenuating membrane-bound gp130 and increasing soluble gp130 abundance and controlling gp130 function in neuronal IL-6 signaling and neuronal survival upon growth-factor withdrawal. CONCLUSION: BACE1 is a new modulator of gp130 function. The BACE1-cleaved, soluble gp130 may serve as a pharmacodynamic BACE1 activity marker to reduce the occurrence of side effects of chronic BACE1 inhibition in humans.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide , Receptor gp130 de Citocinas/uso terapéutico , Ácido Aspártico Endopeptidasas , Interleucina-6 , Proteínas del Tejido Nervioso
15.
Circulation ; 147(11): 867-876, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36597886

RESUMEN

BACKGROUND: Cases of adolescents and young adults developing myocarditis after vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-targeted mRNA vaccines have been reported globally, but the underlying immunoprofiles of these individuals have not been described in detail. METHODS: From January 2021 through February 2022, we prospectively collected blood from 16 patients who were hospitalized at Massachusetts General for Children or Boston Children's Hospital for myocarditis, presenting with chest pain with elevated cardiac troponin T after SARS-CoV-2 vaccination. We performed extensive antibody profiling, including tests for SARS-CoV-2-specific humoral responses and assessment for autoantibodies or antibodies against the human-relevant virome, SARS-CoV-2-specific T-cell analysis, and cytokine and SARS-CoV-2 antigen profiling. Results were compared with those from 45 healthy, asymptomatic, age-matched vaccinated control subjects. RESULTS: Extensive antibody profiling and T-cell responses in the individuals who developed postvaccine myocarditis were essentially indistinguishable from those of vaccinated control subjects, despite a modest increase in cytokine production. A notable finding was that markedly elevated levels of full-length spike protein (33.9±22.4 pg/mL), unbound by antibodies, were detected in the plasma of individuals with postvaccine myocarditis, whereas no free spike was detected in asymptomatic vaccinated control subjects (unpaired t test; P<0.0001). CONCLUSIONS: Immunoprofiling of vaccinated adolescents and young adults revealed that the mRNA vaccine-induced immune responses did not differ between individuals who developed myocarditis and individuals who did not. However, free spike antigen was detected in the blood of adolescents and young adults who developed post-mRNA vaccine myocarditis, advancing insight into its potential underlying cause.


Asunto(s)
COVID-19 , Miocarditis , Adolescente , Niño , Adulto Joven , Humanos , Vacunas contra la COVID-19/efectos adversos , Miocarditis/etiología , Glicoproteína de la Espiga del Coronavirus , COVID-19/prevención & control , SARS-CoV-2 , Citocinas , Autoanticuerpos , Anticuerpos Antivirales
16.
Eur Spine J ; 32(2): 734-742, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534209

RESUMEN

PURPOSE: Bone graft extenders have been developed to prevent donor site morbidity associated with iliac crest bone graft, but few studies compared the efficacy of various substitutes. Our purpose was to determine fusion rate and clinical outcome in patients undergoing lumbar arthrodesis using demineralized bone matrix (DBM) and biphasic calcium phosphate (BCP). METHODS: Patients with degenerative spondylolisthesis undergoing one-level or two-level arthrodesis of lumbar spine were retrospectively reviewed. Two treatment groups placed either BCP or DBM, in addition to local autograft in lumbar posterolateral space. Three-dimensional CT exam and dynamic flexion-extension radiographs at postoperative 2-year were assessed for posterolateral fusion status and pain scale and Oswestry Disability Index (ODI) for clinical outcome. RESULTS: Of the 148 patients reviewed (including 23 in one- and 58 patients in two-level in BCP group, and 47 in one- and 20 patients in two-level in DBM group), no significant differences were found in terms of age, sex, BMI, smoking, diabetes, steroids, number of level fused, non-union rate or revision surgery between BCP and DBM groups. Significantly improved pain scale of back and leg and ODI were found in both groups postoperatively without group difference. We found a comparable fusion rate in one-level surgery (100% versus 93.6%) and a superior fusion rate of BCP group in two-level surgery (98.3% versus 80.0%, p = 0.01). CONCLUSION: Being a bone graft extender without osteoinductive property, with local autograft, BCP is comparable to DBM for one- and superior for two-level fusion. No significant difference was found in clinical outcomes.


Asunto(s)
Sustitutos de Huesos , Fusión Vertebral , Humanos , Fusión Vertebral/métodos , Estudios Retrospectivos , Resultado del Tratamiento , Matriz Ósea/trasplante , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Trasplante Óseo/métodos , Dolor/etiología , Tomografía Computarizada por Rayos X , Sustitutos de Huesos/uso terapéutico
17.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38232012

RESUMEN

The physical and mechanical properties of novel bio-based polymer blends of polylactic acid (PLA), poly(butylene succinate) (PBS), and poly (butylene adipate-co-terephthalate) (PBAT) with various added amounts of nanohydroxyapatite (nHA) were investigated in this study. The formulations of PLA/PBS/PBAT/nHA blends were divided into two series, A and B, containing 70 or 80 wt% PLA, respectively. Samples of four specimens per series were prepared using a twin-screw extruder, and different amounts of nHA were added to meet the regeneration needs of bone graft materials. FTIR and XRD analyses were employed to identify the presence of each polymer and nHA in the various blends. The crystallization behavior of these blends was examined using DSC. Tensile and impact strength tests were performed on all samples to screen feasible formulations of polymer blends for bone graft material applications. Surface morphology analyses were conducted using SEM, and the dispersion of nHA particles in the blends was further tested using TEM. The added nHA also served as a nucleating agent aimed at improving the crystallinity and mechanical properties of the blends. Through the above analyses, the physical and mechanical properties of the polymer blends are reported and the most promising bone graft material formulations are suggested. All blends were tested for thermal degradation analysis using TGA and thermal stability was confirmed. The water absorption experiments carried out in this study showed that the addition of nHA could improve the hydrophilicity of the blends.

18.
Entropy (Basel) ; 26(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38275492

RESUMEN

Anticipatory dynamics (AD) is unusual in that responses from an information receiver can appear ahead of triggers from the source, and direction of information flow (DIF) is needed to establish causality. Although it is believed that anticipatory dynamics is important for animals' survival, natural examples are rare. Time series (trajectories) from a pair of interacting zebrafish are used to look for the existence of AD in natural systems. In order to obtain the DIF between the two trajectories, we have made use of a special experimental design to designate information source. However, we have also used common statistical tools such as Granger causality and transfer entropy to detect DIF. In our experiments, we found that a majority of the fish pairs do not show any anticipatory behaviors and only a few pairs displayed possible AD. Interestingly, for fish in this latter group, they do not display AD all the time. Our findings suggest that the formation of schooling of fish might not need the help of AD, and new tools are needed in the detection of causality in AD system.

19.
Toxicol Rep ; 9: 1120-1129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518463

RESUMEN

Nanoparticles (NPs) with feature sizes ranging between 1 nm and 100 nm have increasingly gained momentum for their versatile functionality as the pharmaceutical agents in many branches of biomedical research and clinical experiments. However, NPs' inherent material toxicity and the concomitant adverse effects of their function, such as photo-physical properties, often remain a major concern over the issues of environmental safety and human health, and require a thorough assessment before a wide-spread usage can be complied. This research herein investigates the intrinsic and photothermal toxicity of Cs0.33WO3 NPs solution in zebrafish larvae through a direct immersion method. Experimentally, the survival, hatching and malformation rates of zebrafish embryo/larvae as functions of the NP feature sizes, concentration and duration of photothermal dose were examined and analyzed. This study verified that the Cs0.33WO3 NPs has an intrinsic toxicity on a scale of a fraction of 1 mg/ml, and the phototoxicity effect of the NIR-irradiated NPs, when irradiated for 30 min, can affect the embryogenesis of zebrafish larvae and causes 60% and 50% in the survival and delayed hatching rates, respectively, as well as a severe malformation.

20.
RSC Adv ; 12(51): 33200-33206, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36425191

RESUMEN

The polychromatic phosphor with an apatite structure Ca2La3(SiO4)3F:0.15Tb3+,xSm3+ (CLSOF:0.15Tb3+,xSm3+) was synthesized via a solid-state route. The phase and morphology of the phosphor has been investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The structures of the as-prepared phosphor were verified by means of the Rietveld method. The optical performance was investigated thoroughly and the phosphors could emit multicolor light from short wavelengths to long wavelengths by gradually increasing the doping contents of samarium. All the results support that the energy transfer in CLSOF:0.15Tb3+,xSm3+ contributes to the color tunable property of the phosphor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...