Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 96: 104809, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37738832

RESUMEN

BACKGROUND: The intestine of children with severe malnutrition (SM) shows structural and functional changes that are linked to increased infection and mortality. SM dysregulates the tryptophan-kynurenine pathway, which may impact processes such as SIRT1- and mTORC1-mediated autophagy and mitochondrial homeostasis. Using a mouse and organoid model of SM, we studied the repercussions of these dysregulations on malnutrition enteropathy and the protective capacity of maintaining autophagy activity and mitochondrial health. METHODS: SM was induced through feeding male weanling C57BL/6 mice a low protein diet (LPD) for 14-days. Mice were either treated with the NAD+-precursor, nicotinamide; an mTORC1-inhibitor, rapamycin; a SIRT1-activator, resveratrol; or SIRT1-inhibitor, EX-527. Malnutrition enteropathy was induced in enteric organoids through amino-acid deprivation. Features of and pathways to malnutrition enteropathy were examined, including paracellular permeability, nutrient absorption, and autophagic, mitochondrial, and reactive-oxygen-species (ROS) abnormalities. FINDINGS: LPD-feeding and ensuing low-tryptophan availability led to villus atrophy, nutrient malabsorption, and intestinal barrier dysfunction. In LPD-fed mice, nicotinamide-supplementation was linked to SIRT1-mediated activation of mitophagy, which reduced damaged mitochondria, and improved intestinal barrier function. Inhibition of mTORC1 reduced intestinal barrier dysfunction and nutrient malabsorption. Findings were validated and extended using an organoid model, demonstrating that resolution of mitochondrial ROS resolved barrier dysfunction. INTERPRETATION: Malnutrition enteropathy arises from a dysregulation of the SIRT1 and mTORC1 pathways, leading to disrupted autophagy, mitochondrial homeostasis, and ROS. Whether nicotinamide-supplementation in children with SM could ameliorate malnutrition enteropathy should be explored in clinical trials. FUNDING: This work was supported by the Bill and Melinda Gates Foundation, the Sickkids Research Institute, the Canadian Institutes of Health Research, and the University Medical Center Groningen.

2.
Biol Open ; 12(8)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37470706

RESUMEN

G9a, also known as EHMT2, is essential for embryogenesis and has specific functions in multiple developmental processes. G9a inactivation affects development of the nervous system, which is formed with contribution of descendants of progenitor cells expressing the transcription factor Isl1. However, the function of G9a in Isl1-expressing progenitors is unknown. Here, we show that G9a is required for proper development of multiple structures formed with contribution of Isl1-expressing progenitors. A Cre-dependent GFP reporter revealed that the recombinase activity of the Isl1-Cre used in this study to inactivate G9a was reduced to a subset of Isl1-expressing progenitor cells. G9a mutants reached endpoint by 7 weeks of age with cardiac hypertrophy, hydrocephalus, underdeveloped cerebellum and hind limb paralysis, modeling aspects of Dandy-Walker complex. Moreover, neuroepithelium of the lateral ventricle derived from Isl1-expressing progenitors was thinner and disorganized, potentially compromising cerebrospinal fluid dynamics in G9a mutants. Micro-computed tomography after iodine staining revealed increased volume of the heart, eye lens and brain structures in G9a mutant fetuses. Thus, altered development of descendants of the second heart field and the neural crest could contribute to multicomponent malformation like Dandy-Walker.


Asunto(s)
Síndrome de Dandy-Walker , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina , Integrasas/genética , Células Madre , Microtomografía por Rayos X , Animales
3.
Cell Mol Life Sci ; 80(7): 183, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37338571

RESUMEN

Peroxisomes are essential for mitochondrial health, as the absence of peroxisomes leads to altered mitochondria. However, it is unclear whether the changes in mitochondria are a function of preserving cellular function or a response to cellular damage caused by the absence of peroxisomes. To address this, we developed conditional hepatocyte-specific Pex16 deficient (Pex16 KO) mice that develop peroxisome loss and subjected them to a low-protein diet to induce metabolic stress. Loss of PEX16 in hepatocytes led to increased biogenesis of small mitochondria and reduced autophagy flux but with preserved capacity for respiration and ATP capacity. Metabolic stress induced by low protein feeding led to mitochondrial dysfunction in Pex16 KO mice and impaired biogenesis. Activation of PPARα partially corrected these mitochondrial disturbances, despite the absence of peroxisomes. The findings of this study demonstrate that the absence of peroxisomes in hepatocytes results in a concerted effort to preserve mitochondrial function, including increased mitochondrial biogenesis, altered morphology, and modified autophagy activity. Our study underscores the relationship between peroxisomes and mitochondria in regulating the hepatic metabolic responses to nutritional stressors.


Asunto(s)
Biogénesis de Organelos , Peroxisomas , Ratones , Animales , Peroxisomas/metabolismo , Mitocondrias/metabolismo , Hígado/metabolismo , Autofagia
4.
Nat Cardiovasc Res ; 2(2): 174-191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665902

RESUMEN

Cardiac metabolism is deranged in heart failure, but underlying mechanisms remain unclear. Here, we show that lysine demethylase 8 (Kdm8) maintains an active mitochondrial gene network by repressing Tbx15, thus preventing dilated cardiomyopathy leading to lethal heart failure. Deletion of Kdm8 in mouse cardiomyocytes increased H3K36me2 with activation of Tbx15 and repression of target genes in the NAD+ pathway before dilated cardiomyopathy initiated. NAD+ supplementation prevented dilated cardiomyopathy in Kdm8 mutant mice, and TBX15 overexpression blunted NAD+-activated cardiomyocyte respiration. Furthermore, KDM8 was downregulated in human hearts affected by dilated cardiomyopathy, and higher TBX15 expression defines a subgroup of affected hearts with the strongest downregulation of genes encoding mitochondrial proteins. Thus, KDM8 represses TBX15 to maintain cardiac metabolism. Our results suggest that epigenetic dysregulation of metabolic gene networks initiates myocardium deterioration toward heart failure and could underlie heterogeneity of dilated cardiomyopathy.

5.
Nat Commun ; 13(1): 7576, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36481684

RESUMEN

Mortality in children with severe malnutrition is strongly related to signs of metabolic dysfunction, such as hypoglycemia. Lower circulating tryptophan levels in children with severe malnutrition suggest a possible disturbance in the tryptophan-nicotinamide adenine dinucleotide (TRP-NAD+) pathway and subsequently in NAD+ dependent metabolism regulator sirtuin1 (SIRT1). Here we show that severe malnutrition in weanling mice, induced by 2-weeks of low protein diet feeding from weaning, leads to an impaired TRP-NAD+ pathway with decreased NAD+ levels and affects hepatic mitochondrial turnover and function. We demonstrate that stimulating the TRP-NAD+ pathway with NAD+ precursors improves hepatic mitochondrial and overall metabolic function through SIRT1 modulation. Activating SIRT1 is sufficient to induce improvement in metabolic functions. Our findings indicate that modulating the TRP-NAD+ pathway can improve liver metabolic function in a mouse model of severe malnutrition. These results could lead to the development of new interventions for children with severe malnutrition.


Asunto(s)
Hepatopatías , NAD , Ratones , Animales , Triptófano
6.
Sci Rep ; 12(1): 19948, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402829

RESUMEN

Severe malnutrition accounts for half-a-million deaths annually in children under the age of five. Despite improved WHO guidelines, inpatient mortality remains high and is associated with metabolic dysfunction. Previous studies suggest a correlation between hepatic metabolic dysfunction and impaired autophagy. We aimed to determine the role of mTORC1 inhibition in a murine model of malnutrition-induced hepatic dysfunction. Wild type weanling C57/B6 mice were fed a 18 or 1% protein diet for two weeks. A third low-protein group received daily rapamycin injections, an mTORC1 inhibitor. Hepatic metabolic function was assessed by histology, immunofluorescence, gene expression, metabolomics and protein levels. Low protein-fed mice manifested characteristics of severe malnutrition, including weight loss, hypoalbuminemia, hypoglycemia, hepatic steatosis and cholestasis. Low protein-fed mice had fewer mitochondria and showed signs of impaired mitochondrial function. Rapamycin prevented hepatic steatosis, restored ATP levels and fasted plasma glucose levels compared to untreated mice. This correlated with increased content of LC3-II, and decreased content mitochondrial damage marker, PINK1. We demonstrate that hepatic steatosis and disturbed mitochondrial function in a murine model of severe malnutrition can be partially prevented through inhibition of mTORC1. These findings suggest that stimulation of autophagy could be a novel approach to improve metabolic function in severely malnourished children.


Asunto(s)
Hígado Graso , Desnutrición , Ratones , Animales , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Serina-Treonina Quinasas TOR , Desnutrición/complicaciones , Sirolimus/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina
7.
Cardiovasc Diabetol ; 21(1): 31, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35209901

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is associated with coronary microvascular dysfunction, which is thought to contribute to compromised diastolic function, ultimately culminating in heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms remain incompletely understood, and no early diagnostics are available. We sought to gain insight into biomarkers and potential mechanisms of microvascular dysfunction in obese mouse (db/db) and lean rat (Goto-Kakizaki) pre-clinical models of T2D-associated diastolic dysfunction. METHODS: The microRNA (miRNA) content of circulating extracellular vesicles (EVs) was assessed in T2D models to identify biomarkers of coronary microvascular dysfunction/rarefaction. The potential source of circulating EV-encapsulated miRNAs was determined, and the mechanisms of induction and the function of candidate miRNAs were assessed in endothelial cells (ECs). RESULTS: We found an increase in miR-30d-5p and miR-30e-5p in circulating EVs that coincided with indices of coronary microvascular EC dysfunction (i.e., markers of oxidative stress, DNA damage/senescence) and rarefaction, and preceded echocardiographic evidence of diastolic dysfunction. These miRNAs may serve as biomarkers of coronary microvascular dysfunction as they are upregulated in ECs of the left ventricle of the heart, but not other organs, in db/db mice. Furthermore, the miR-30 family is secreted in EVs from senescent ECs in culture, and ECs with senescent-like characteristics are present in the db/db heart. Assessment of miR-30 target pathways revealed a network of genes involved in fatty acid biosynthesis and metabolism. Over-expression of miR-30e in cultured ECs increased fatty acid ß-oxidation and the production of reactive oxygen species and lipid peroxidation, while inhibiting the miR-30 family decreased fatty acid ß-oxidation. Additionally, miR-30e over-expression synergized with fatty acid exposure to down-regulate the expression of eNOS, a key regulator of microvascular and cardiomyocyte function. Finally, knock-down of the miR-30 family in db/db mice decreased markers of oxidative stress and DNA damage/senescence in the microvascular endothelium. CONCLUSIONS: MiR-30d/e represent early biomarkers and potential therapeutic targets that are indicative of the development of diastolic dysfunction and may reflect altered EC fatty acid metabolism and microvascular dysfunction in the diabetic heart.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Endoteliales/patología , Ácidos Grasos/metabolismo , Insuficiencia Cardíaca , MicroARNs , Animales , Biomarcadores , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Células Endoteliales/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Ratas , Volumen Sistólico
8.
Sci Rep ; 11(1): 7635, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33828139

RESUMEN

Malnutrition impacts approximately 50 million children worldwide and is linked to 45% of global mortality in children below the age of five. Severe acute malnutrition (SAM) is associated with intestinal barrier breakdown and epithelial atrophy. Extracellular vesicles including exosomes (EVs; 30-150 nm) can travel to distant target cells through biofluids including milk. Since milk-derived EVs are known to induce intestinal stem cell proliferation, this study aimed to examine their potential efficacy in improving malnutrition-induced atrophy of intestinal mucosa and barrier dysfunction. Mice were fed either a control (18%) or a low protein (1%) diet for 14 days to induce malnutrition. From day 10 to 14, they received either bovine milk EVs or control gavage and were sacrificed on day 15, 4 h after a Fluorescein Isothiocyanate (FITC) dose. Tissue and blood were collected for histological and epithelial barrier function analyses. Mice fed low protein diet developed intestinal villus atrophy and barrier dysfunction. Despite continued low protein diet feeding, milk EV treatment improved intestinal permeability, intestinal architecture and cellular proliferation. Our results suggest that EVs enriched from milk should be further explored as a valuable adjuvant therapy to standard clinical management of malnourished children with high risk of morbidity and mortality.


Asunto(s)
Vesículas Extracelulares/fisiología , Mucosa Intestinal/efectos de los fármacos , Desnutrición/terapia , Leche/metabolismo , Animales , Dieta , Dietoterapia/métodos , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Femenino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Desnutrición/patología , Ratones , Ratones Endogámicos C57BL , Leche/fisiología
9.
Front Aging Neurosci ; 13: 762649, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35250531

RESUMEN

BACKGROUND AND OBJECTIVE: Inflammatory mediators are closely associated with the pathogenesis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Netrin-1 is an axon guidance protein and despite its capacity to function as a neuroimmune guidance signal, its role in AD or MCI is poorly understood. In addition, the association among netrin-1, cognitive impairment and serum inflammatory cytokines such as interleukin-17 (IL-17) and tumor necrosis (TNF-α) remains unclear. The aim of this study was to determine serum levels of IL-17, TNF-α and netrin-1in a cohort of AD and MCI patients, and to study the relationship between these cytokines and cognitive status, as well as to assess the possible relationships between netrin-1 levels and inflammatory molecules. METHODS: Serum concentrations of netrin-1, TNF-α and IL-17 were determined in 20 AD patients, 22 MCI patients and 22 healthy controls using an enzyme-linked immunosorbent assay (ELISA). In addition, neuropsychological evaluations and psychometric assessments were performed in all subjects. RESULTS: Serum netrin-1 levels were decreased in AD and MCI patients and were positively correlated with Mini Mental State Examination (MMSE) scores. In contrast, serum TNF-α and IL-17 levels were elevated in AD and MCI cohorts and negatively correlated with MMSE scores. Serum netrin-1 levels were inversely related with TNF-α and IL-17 levels in AD, but not MCI, patients. CONCLUSION: Based on the findings reported here, netrin-1 may serve as a marker for the early recognition of dementia and predict cognitive impairment.

10.
Mol Metab ; 43: 101116, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33212270

RESUMEN

OBJECTIVE: Heart disease risk can be programmed by intrauterine exposure to obesity. Dysregulating key transcription factors in cardiac progenitors can cause subsequent adult-onset heart disease. In this study, we investigated the transcriptional pathways that are altered in the embryonic heart and linked to heart disease risk in offspring exposed to obesity during pregnancy. METHODS: Female mice were fed an obesogenic diet and mated with males fed a control diet. Heart function and genome-wide gene expression were analyzed in adult offspring born to obese and lean mice at baseline and in response to stress. Cross-referencing with genes dysregulated genome-wide in cardiac progenitors from embryos of obese mice and human fetal hearts revealed the transcriptional events associated with adult-onset heart disease susceptibility. RESULTS: We found that adult mice born to obese mothers develop mild heart dysfunction consistent with early stages of disease. Accordingly, hearts of these mice dysregulated genes controlling extracellular matrix remodeling, metabolism, and TGF-ß signaling, known to control heart disease progression. These pathways were already dysregulated in cardiac progenitors in embryos of obese mice. Moreover, in response to cardiovascular stress, the heart of adults born to obese dams developed exacerbated myocardial remodeling and excessively activated regulators of cell-extracellular matrix interactions but failed to activate metabolic regulators. Expression of developmentally regulated genes was altered in cardiac progenitors of embryos of obese mice and human hearts of fetuses of obese donors. Accordingly, the levels of Nkx2-5, a key regulator of heart development, inversely correlated with maternal body weight in mice. Furthermore, Nkx2-5 target genes were dysregulated in cardiac progenitors and persistently in adult hearts born to obese mice and human hearts from pregnancies affected by obesity. CONCLUSIONS: Obesity during pregnancy alters Nkx2-5-controlled transcription in differentiating cardiac progenitors and persistently in the adult heart, making the adult heart vulnerable to dysregulated stress responses.


Asunto(s)
Cardiopatías/etiología , Cardiopatías/metabolismo , Obesidad Materna/fisiopatología , Animales , Peso Corporal , Dieta Alta en Grasa , Susceptibilidad a Enfermedades/metabolismo , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Proteína Homeótica Nkx-2.5/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Miocardio/metabolismo , FN-kappa B/metabolismo , Obesidad/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo
11.
Dis Model Mech ; 12(12)2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31704804

RESUMEN

Major risk factors for necrotizing enterocolitis (NEC) are formula feeding and prematurity; however, their pathogenic mechanisms are unknown. Here, we found that insufficient arginine/nitric oxide synthesis limits blood flow in the intestinal microvasculature, leading to hypoxia, mucosal damage and NEC in the premature intestine after formula feeding. Formula feeding led to increased intestinal hypoxia in pups at postnatal day (P)1 and P5, but not in more mature pups at P9. Accordingly, blood flow in the intestinal microvasculature increased after formula feeding in P9 pups only. mRNA profiling revealed that regulators of arginine/nitric oxide synthesis are at higher levels in endothelial cells of the intestine in P9 than in P1 pups. Importantly, arginine supplementation increased intestinal microvasculature blood flow and prevented NEC, whereas an arginine antagonist exacerbated NEC. Our results suggest that balancing intestinal oxygen demand and supply in the premature intestine by modulating arginine/nitric oxide could be used to prevent NEC.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Células Endoteliales/patología , Enterocolitis Necrotizante/patología , Hipoxia/patología , Fórmulas Infantiles/química , Mucosa Intestinal/fisiopatología , Intestinos/irrigación sanguínea , Microcirculación , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Leche Humana/química , Óxido Nítrico/metabolismo , RNA-Seq , Vasoconstricción
12.
Cell Death Dis ; 10(10): 743, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582728

RESUMEN

Necrotizing enterocolitis (NEC) is a devastating neonatal disease characterized by acute intestinal injury. Intestinal stem cell (ISC) renewal is required for gut regeneration in response to acute injury. The Wnt/ß-catenin pathway is essential for intestinal renewal and ISC maintenance. We found that ISC expression, Wnt activity and intestinal regeneration were all decreased in both mice with experimental NEC and in infants with acute active NEC. Moreover, intestinal organoids derived from NEC-injured intestine of both mice and humans failed to maintain proliferation and presented more differentiation. Administration of Wnt7b reversed these changes and promoted growth of intestinal organoids. Additionally, administration of exogenous Wnt7b rescued intestinal injury, restored ISC, and reestablished intestinal epithelial homeostasis in mice with NEC. Our findings demonstrate that during NEC, Wnt/ß-catenin signaling is decreased, ISC activity is impaired, and intestinal regeneration is defective. Administration of Wnt resulted in the maintenance of intestinal epithelial homeostasis and avoidance of NEC intestinal injury.


Asunto(s)
Enterocolitis Necrotizante/fisiopatología , Intestinos/fisiopatología , Regeneración/fisiología , Vía de Señalización Wnt , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Enterocolitis Necrotizante/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Intestinos/efectos de los fármacos , Intestinos/patología , Ratones Endogámicos C57BL , Modelos Biológicos , Organoides/efectos de los fármacos , Organoides/metabolismo , Proteínas Proto-Oncogénicas/administración & dosificación , Proteínas Proto-Oncogénicas/farmacología , Regeneración/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Análisis de Supervivencia , Proteínas Wnt/administración & dosificación , Proteínas Wnt/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética
13.
Front Aging Neurosci ; 11: 124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191297

RESUMEN

There is increasing evidence indicating that inflammation represents a key pathological component of Alzheimer's disease (AD). A possible factor that may contribute to this process is netrin-1, a neuronal guidance molecule. This molecule has been shown to exert an unexpected immunomodulatory function. However, the potential changes and correlations of netrin-1 with T helper 17/regulatory T cells (Th17/Tregs) as related to inflammation in AD has yet to be examined. In this study, netrin-1 and Th17/Tregs balance were investigated, and the relationship among netrin-1, Th17/Tregs and cognitive function were analyzed in a rat model of AD. In this model, a bilateral intracerebroventricular administration of Amyloid ß1-42 (Aß1-42) was used to produce spatial learning and memory deficits, as well as increased neuronal apoptosis, which were detected 7 days after injection for AD7d group and 14 days for AD14d group. Netrin-1 concentrations were significantly down regulated in both serum and cerebrospinal fluid (CSF) of these AD rats, effects which were strongly correlated with cognitive deficits. Increased levels of interleukin (IL)-17 and deceased IL-10 were observed in both the circulation and CSF and were also correlated with the percent of time spent in the target quadrant of AD in these rats. These changes resulted in netrin-1 concentrations being negatively correlated with IL-17 but positively correlated with IL-10 concentrations in the serum and CSF. We also found that the Th17/Tregs balance was disrupted in these AD rats. Collectively, these findings reveal that the reduction in netrin-1 and the correlated disruption of Th17/Tregs balance in AD rats may diminish the immunosuppressive effect of netrin-1 on Th17/Tregs in AD pathogenesis.

14.
J Biol Chem ; 293(22): 8449-8461, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29610276

RESUMEN

The CCCTC-binding factor (CTCF) is a versatile transcriptional regulator required for embryogenesis, but its function in vascular development or in diseases with a vascular component is poorly understood. Here, we found that endothelial Ctcf is essential for mouse vascular development and limits accumulation of reactive oxygen species (ROS). Conditional knockout of Ctcf in endothelial progenitors and their descendants affected embryonic growth, and caused lethality at embryonic day 10.5 because of defective yolk sac and placental vascular development. Analysis of global gene expression revealed Frataxin (Fxn), the gene mutated in Friedreich's ataxia (FRDA), as the most strongly down-regulated gene in Ctcf-deficient placental endothelial cells. Moreover, in vitro reporter assays showed that Ctcf activates the Fxn promoter in endothelial cells. ROS are known to accumulate in the endothelium of FRDA patients. Importantly, Ctcf deficiency induced ROS-mediated DNA damage in endothelial cells in vitro, and in placental endothelium in vivo Taken together, our findings indicate that Ctcf promotes vascular development and limits oxidative stress in endothelial cells. These results reveal a function for Ctcf in vascular development, and suggest a potential mechanism for endothelial dysfunction in FRDA.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Embrión de Mamíferos/patología , Endotelio Vascular/patología , Ataxia de Friedreich/patología , Regulación de la Expresión Génica , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/metabolismo , Endotelio Vascular/metabolismo , Femenino , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Masculino , Ratones , Ratones Noqueados , Frataxina
15.
Methods Mol Biol ; 1752: 63-69, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29564762

RESUMEN

The processes by which the intra-abdominal organ circulatory system develops in the embryo and during organogenesis are unclear. Previous studies have used fixed tissues to study the development of abdominal organ vasculature in the embryo; however, the intravital circulation of intra-abdominal organs in rodent fetal development has not been studied. This protocol describes a system that uses two-photon laser-scanning microscopy (TPLSM) for real-time observation and quantification of normal and pathologic live fetal intra-abdominal dynamics while the fetus is still connected to the mother via the umbilical cord.


Asunto(s)
Microscopía Intravital/métodos , Microscopía Confocal/métodos , Programas Informáticos , Animales , Embrión de Mamíferos/ultraestructura , Femenino , Ratones , Embarazo , Cordón Umbilical/diagnóstico por imagen
16.
Methods Mol Biol ; 1752: 101-109, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29564766

RESUMEN

Isolation and culture of endothelial cells (ECs) is a useful tool to study the cellular processes involved in vascular development and vascular maturation. In this chapter, we describe a method to isolate and culture endothelial cells from placentae. This method takes advantage of two transgenes: ROSA26 mT/mG , which drives the expression of GFP upon Cre-mediated recombination, and Tie2-Cre, which expresses Cre driven by the Tie2 promoter in endothelial progenitors and their descendants. GFP-expressing endothelial cells are isolated through fluorescence-activated cell sorting (FACS). The sorted cells express the endothelial marker CD31. This method can be used to study the morphological and physiological properties of placental endothelial cells in mice carrying mutations affecting vascular development.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Endoteliales/citología , Placenta/citología , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Ratones , Ratones Transgénicos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Embarazo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
17.
Blood ; 131(20): 2223-2234, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29555646

RESUMEN

Despite the well-established cell-intrinsic role of epigenetic factors in normal and malignant hematopoiesis, their cell-extrinsic role remains largely unexplored. Herein we investigated the hematopoietic impact of inactivating Ezh2, a key component of polycomb repressive complex 2 (PRC2), in the fetal liver (FL) vascular niche. Hematopoietic specific (Vav-iCre) Ezh2 inactivation enhanced FL hematopoietic stem cell (HSC) expansion with normal FL erythropoiesis. In contrast, endothelium (Tie2-Cre) targeted Ezh2 inactivation resulted in embryonic lethality with severe anemia at embryonic day 13.5 despite normal emergence of functional HSCs. Ezh2-deficient FL endothelium overexpressed Mmp9, which cell-extrinsically depleted the membrane-bound form of Kit ligand (mKitL), an essential hematopoietic cytokine, in FL. Furthermore, Mmp9 inhibition in vitro restored mKitL expression along with the erythropoiesis supporting capacity of FL endothelial cells. These data establish that Ezh2 is intrinsically dispensable for FL HSCs and provides proof of principle that modulation of epigenetic regulators in niche components can exert a marked cell-extrinsic impact.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Feto , Hematopoyesis Extramedular , Hígado/fisiología , Anemia/genética , Anemia/metabolismo , Animales , Biomarcadores , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Silenciador del Gen , Hematopoyesis Extramedular/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Inmunohistoquímica , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Fenotipo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Factor de Células Madre/metabolismo
18.
J Am Soc Nephrol ; 29(2): 532-544, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29109083

RESUMEN

Intrinsic ureteropelvic junction obstruction is the most common cause of congenital hydronephrosis, yet the underlying pathogenesis is undefined. Hedgehog proteins control morphogenesis by promoting GLI-dependent transcriptional activation and inhibiting the formation of the GLI3 transcriptional repressor. Hedgehog regulates differentiation and proliferation of ureteric smooth muscle progenitor cells during murine kidney-ureter development. Histopathologic findings of smooth muscle cell hypertrophy and stroma-like cells, consistently observed in obstructing tissue at the time of surgical correction, suggest that Hedgehog signaling is abnormally regulated during the genesis of congenital intrinsic ureteropelvic junction obstruction. Here, we demonstrate that constitutively active Hedgehog signaling in murine intermediate mesoderm-derived renal progenitors results in hydronephrosis and failure to develop a patent pelvic-ureteric junction. Tissue obstructing the ureteropelvic junction was marked as early as E13.5 by an ectopic population of cells expressing Ptch2, a Hedgehog signaling target. Constitutive expression of GLI3 repressor in Ptch1-deficient mice rescued ectopic Ptch2 expression and obstructive hydronephrosis. Whole transcriptome analysis of isolated Ptch2+ cells revealed coexpression of genes characteristic of stromal progenitor cells. Genetic lineage tracing indicated that stromal cells blocking the ureteropelvic junction were derived from intermediate mesoderm-derived renal progenitors and were distinct from the smooth muscle or epithelial lineages. Analysis of obstructive ureteric tissue resected from children with congenital intrinsic ureteropelvic junction obstruction revealed a molecular signature similar to that observed in Ptch1-deficient mice. Together, these results demonstrate a Hedgehog-dependent mechanism underlying mammalian intrinsic ureteropelvic junction obstruction.


Asunto(s)
Proteínas Hedgehog/genética , Hidronefrosis/genética , Proteínas del Tejido Nervioso/genética , Receptor Patched-1/genética , Receptor Patched-2/genética , Transducción de Señal , Obstrucción Ureteral/genética , Proteína Gli3 con Dedos de Zinc/genética , Aldehído Oxidorreductasas/genética , Animales , Linaje de la Célula , Niño , Femenino , Factores de Transcripción Forkhead/genética , Expresión Génica , Proteínas Hedgehog/metabolismo , Humanos , Hidronefrosis/congénito , Hidronefrosis/patología , Hibridación in Situ , Pelvis Renal/embriología , Pelvis Renal/metabolismo , Masculino , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Transcriptoma , Regulación hacia Arriba , Uréter/embriología , Uréter/metabolismo , Obstrucción Ureteral/congénito , Obstrucción Ureteral/patología , Proteína Gli3 con Dedos de Zinc/metabolismo
19.
Sci Rep ; 7: 46616, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492284

RESUMEN

Maternal separation (MS) in neonates can lead to intestinal injury. MS in neonatal mice disrupts mucosal morphology, induces colonic inflammation and increases trans-cellular permeability. Several studies indicate that intestinal epithelial stem cells are capable of initiating gut repair in a variety of injury models but have not been reported in MS. The pathophysiology of MS-induced gut injury and subsequent repair remains unclear, but communication between the brain and gut contribute to MS-induced colonic injury. Corticotropin-releasing hormone (CRH) is one of the mediators involved in the brain-gut axis response to MS-induced damage. We investigated the roles of the CRH receptors, CRHR1 and CRHR2, in MS-induced intestinal injury and subsequent repair. To distinguish their specific roles in mucosal injury, we selectively blocked CRHR1 and CRHR2 with pharmacological antagonists. Our results show that in response to MS, CRHR1 mediates gut injury by promoting intestinal inflammation, increasing gut permeability, altering intestinal morphology, and modulating the intestinal microbiota. In contrast, CRHR2 activates intestinal stem cells and is important for gut repair. Thus, selectively blocking CRHR1 and promoting CRHR2 activity could prevent the development of intestinal injuries and enhance repair in the neonatal period when there is increased risk of intestinal injury such as necrotizing enterocolitis.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Mucosa Intestinal , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Animales , Animales Recién Nacidos , Colon/lesiones , Colon/metabolismo , Colon/patología , Mucosa Intestinal/lesiones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/biosíntesis
20.
Development ; 144(11): 1976-1987, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28455378

RESUMEN

Defective fetoplacental vascular maturation causes intrauterine growth restriction (IUGR). A transcriptional switch initiates placental maturation, during which blood vessels elongate. However, the cellular mechanisms and regulatory pathways involved are unknown. We show that the histone methyltransferase G9a, also known as Ehmt2, activates the Notch pathway to promote placental vascular maturation. Placental vasculature from embryos with G9a-deficient endothelial progenitor cells failed to expand owing to decreased endothelial cell proliferation and increased trophoblast proliferation. Moreover, G9a deficiency altered the transcriptional switch initiating placental maturation and caused downregulation of Notch pathway effectors including Rbpj Importantly, Notch pathway activation in G9a-deficient endothelial progenitors extended embryonic life and rescued placental vascular expansion. Thus, G9a activates the Notch pathway to balance endothelial cell and trophoblast proliferation and coordinates the transcriptional switch controlling placental vascular maturation. Accordingly, G9A and RBPJ were downregulated in human placentae from IUGR-affected pregnancies, suggesting that G9a is an important regulator in placental diseases caused by defective vascular maturation.


Asunto(s)
Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Placenta/irrigación sanguínea , Receptores Notch/metabolismo , Transducción de Señal , Animales , Movimiento Celular/genética , Proliferación Celular , Regulación hacia Abajo/genética , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/ultraestructura , Desarrollo Embrionario/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Retardo del Crecimiento Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Ratones , Organogénesis/genética , Placenta/citología , Placenta/ultraestructura , Embarazo , Transducción de Señal/genética , Células Madre/citología , Células Madre/metabolismo , Transcripción Genética , Trofoblastos/citología , Trofoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...