Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 12: 985962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276078

RESUMEN

Lung cancer is the malignant tumor with high invasion and metastasis, which seriously threatens public health. Previous study showed that NLRP3 could promote the occurrence of lung tumors in B(a)P-induced mice. MicroRNAs are closely related to the progression and metastasis of lung cancer by regulating target genes. However, which miRNAs affect the migration and invasion of lung cancer cells through regulating NLRP3 remains poorly defined. In this study, the miRNAs targeting NLRP3 were selected from TargetScan and miRDB database and finally miR-223-3p was chosen due to the consistent expression in both A549 and H520 cells. Then, the migration and invasion of lung cancer cells were detected with miR-223-3p mimic and inhibitor using Transwell assay, at the same time the expression of NLRP3, cleaved caspase-1, IL-1ß and IL-18 was determined using Western Blot and immunohistochemistry assay. Our data demonstrated that miR-223-3p was upregulated in both A549 and H520 cells. Furthermore, the migration and invasion of A549 and H520 cells were promoted after inhibiting miR-223-3p. Besides, the levels of NLRP3, cleaved caspase-1, IL-1ß and IL-18 were increased in the two lung cancer cells. And the corresponding results were contrary in miR-223-3p mimic group. Taken together, miR-223-3p attenuates the migration and invasion of NSCLC cells by regulating NLRP3, which provides evidence for the prevention and targeted treatment of NSCLC.

2.
Nanoscale ; 11(22): 10716-10726, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31120085

RESUMEN

We report on the thermal stability of multilayered V2CTx MXenes under different atmospheres by combining in situ Raman spectroscopy with ex situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) in order to elucidate and monitor the molecular, electronic, and structural changes of both the surface and bulk of the V2CTx MXene which has recently received much attention. The MXene samples were heated up to 600 °C in inert (N2), oxidative (CO2, air), and reductive (H2) environments under similar conditions. In situ Raman showed that the V[double bond, length as m-dash]O vibration for two-dimensional vanadia is preserved up to 600 °C under N2, while its intensity reduces under H2. When heated above 300 °C under either CO2 or air, V2CTx slightly oxidizes or transforms into V2O5, respectively. Furthermore, SEM revealed the presence of an accordion-like layered structure for the MXene under N2 and H2, while under CO2 and air the layered structure collapses and forms VO2 (V4+) and V2O5 (V5+) crystals, respectively. XPS reveals that, regardless of the gas, surface V species oxidize above 300 °C during the dehydration process. Finally, we demonstrated that the partial dehydration of V2CTx results in the partial oxidation of the material, and the total dehydration is achieved once 700 °C is reached. We believe that our methodology is a unique alternative to tune the dehydration, oxidation, and properties of V2CTx, which allows for the expansion of applications of MXenes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA