Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fish Physiol Biochem ; 50(1): 127-143, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36826624

RESUMEN

Little information is available on how exogenous bile acids alter lipid metabolism in muscle of fish. In the present study, an 8-week feeding trial were used to investigate the impacts of bile acids on lipid deposition, lipid metabolism, lipidomics, and transcriptomics in muscle of pearl gentian grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) fed a high-fat diet (HD). The HD treatment significantly increased the crude lipid content, while bile acids diet (BD) treatment decreased it (p = 0.057). BD treatment significantly decreased triglycerides level and significantly increased phosphatidylcholines, phosphatidylethanolamines, and phosphatidylglycerol levels. The contents of TG (17:0/18:2/18:2), TG (17:1/18:2/22:6), PC (6:0/22:1), PC (9:0/26:1), PC (26:1/6:0), PC (17:2/18:2), PE (16:0/18:1), PE (18:0/17:1), PG (18:0/20:5), PG (18:3/20:5), PG (19:0/16:1), and PG (18:0/18:1) in muscle were well response to dietary lipid level and bile acids supplementation. HD and BD groups induced a variety of adaptive metabolic responses in transcriptomics. HD treatment increased the lipogenesis and decreased lipolysis, whereas BD treatment decreased the lipogenesis and increased lipolysis. Present study revealed the improvement of muscular lipid metabolism and lipid composition in response to bile acids administration in pearl gentian grouper.


Asunto(s)
Lubina , Metabolismo de los Lípidos , Animales , Dieta Alta en Grasa , Lubina/fisiología , Suplementos Dietéticos , Hígado/metabolismo , Ácidos y Sales Biliares/metabolismo , Lipidómica , Perfilación de la Expresión Génica , Lípidos/farmacología
2.
Br J Nutr ; 131(1): 27-40, 2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37492950

RESUMEN

An 8-week experiment was performed to investigate the influence on growth performance, plasma biochemistry, glucose metabolism and the insulin pathway of supplementation of dietary taurine to a high-carbohydrate diet for grass carp. In this study, fish were fed diets at one of two carbohydrate levels, 31·49 % (positive control) or 38·61 % (T00). The high-carbohydrate basal diet (T00), without taurine, was supplemented with 0·05 % (T05), 0·10 % (T10), 0·15 % (T15) or 0·20 % (T20) taurine, resulting in six isonitrogenous (30·37 %) and isolipidic (2·37 %) experimental diets. The experimental results showed that optimal taurine level improved significantly weight gain, specific growth rate (SGR), feed utilisation, reduced plasma total cholesterol levels, TAG and promoted insulin-like growth factor level. Glucokinase, pyruvate kinase and phosphoenolpyruvate carboxykinase activities showed a quadratic function model with increasing dietary taurine level, while hexokinase, fatty acid synthetase activities exhibited a positive linear trend. Optimal taurine supplementation in high-carbohydrate diet upregulated insulin receptor (Ir), insulin receptor substrate (Irs1), phosphatidylinositol 3-kinase (pi3k), protein kinase B (akt1), glycogen synthase kinase 3 ß (gs3kß) mRNA level and downregulated insulin-like growth factor (igf-1), insulin-like growth factor 1 receptor (igf-1R) and Fork head transcription factor 1 (foxo1) mRNA level. The above results suggested that optimal taurine level could improve growth performance, hepatic capacity for glycolipid metabolism and insulin sensitivity, thus enhancing the utilisation of carbohydrates in grass carp. Based on SGR, dietary optimal tributyrin taurine supplementation in grass carp was estimated to be 0·08 %.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Animales , Proteínas Proto-Oncogénicas c-akt , Receptor de Insulina , Carpas/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas de Peces/genética , Dieta/veterinaria , Suplementos Dietéticos/análisis , ARN Mensajero/metabolismo , Carbohidratos , Glucosa , Alimentación Animal/análisis , Inmunidad Innata
3.
Front Immunol ; 14: 1301033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077360

RESUMEN

Glutamine has been used to improve intestinal development and immunity in fish. We previously found that dietary glutamine enhances growth and alleviates enteritis in juvenile hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). This study aimed to further reveal the protective role of glutamine on glycinin-induced enteritis by integrating transcriptome, proteome, and microRNA analyses. Three isonitrogenous and isolipidic trial diets were formulated: a diet containing 10% glycinin (11S group), 10% glycinin diet supplemented with 2% alanine-glutamine (Gln group), and a diet containing neither glycinin nor alanine-glutamine (fishmeal, FM group). Each experimental diet was fed to triplicate hybrid grouper groups for 8 weeks. The analysis of intestinal transcriptomic and proteomics revealed a total of 570 differentially expressed genes (DEGs) and 169 differentially expressed proteins (DEPs) in the 11S and FM comparison group. Similarly, a total of 626 DEGs and 165 DEPs were identified in the Gln and 11S comparison group. Integration of transcriptome and proteome showed that 117 DEGs showed consistent expression patterns at both the transcriptional and translational levels in the Gln and 11S comparison group. These DEGs showed significant enrichment in pathways associated with intestinal epithelial barrier function, such as extracellular matrix (ECM)-receptor interaction, tight junction, and cell adhesion molecules (P < 0.05). Further, the expression levels of genes (myosin-11, cortactin, tenascin, major histocompatibility complex class I and II) related to these pathways above were significantly upregulated at both the transcriptional and translational levels (P < 0.05). The microRNA results showed that the expression levels of miR-212 (target genes colla1 and colla2) and miR-18a-5p (target gene colla1) in fish fed Gln group were significantly lower compared to the 11S group fish (P < 0.05). In conclusion, ECM-receptor interaction, tight junction, and cell adhesion molecules pathways play a key role in glutamine alleviation of hybrid grouper enteritis induced by high-dose glycinin, in which miRNAs and target mRNAs/proteins participated cooperatively. Our findings provide valuable insights into the RNAs and protein profiles, contributing to a deeper understanding of the underlying mechanism for fish enteritis.


Asunto(s)
Lubina , Enteritis , MicroARNs , Animales , Alanina , Moléculas de Adhesión Celular/genética , Enteritis/inducido químicamente , Perfilación de la Expresión Génica , Glutamina , MicroARNs/genética , Proteoma/genética , Proteómica
4.
Animals (Basel) ; 13(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37760294

RESUMEN

An analysis of the extent of the effect of steroidal saponin addition on glucose and lipid metabolism in hybrid grouper liver was performed at the transcriptomic and metabolomic levels. Feeds (52% crude protein, 14% crude lipid) were prepared containing 0% (S0), 0.1% (S0.1), and 0.2% (S0.2) steroidal saponins. After eight weeks of feeding trial, compared to the S0 group, the activities of serum albumin, alanine aminotransferase, and aspartate transaminase were significantly lower and the activities of lysozyme, acid phosphatase, and alkaline phosphatase were significantly higher in the S0.1 group (p < 0.05). The superoxide dismutase, catalase, and glutathione peroxidase activities in the livers of the S0.1 group were significantly higher than those of the S0 group, while the malondialdehyde content was significantly lower than that of the S0 group (p < 0.05). There were forty-two differentially expressed genes and thirty-two differential metabolites associated with glucose and lipid metabolism enriched using KEGG and GO. In the S0 group, the expression of prostaglandin-endoperoxide synthase 1, prostaglandin E synthase 1, and thromboxane-2 synthase mRNA was significantly higher than in the S0.1 group (p < 0.05). The expression levels of genes in the S0 group were significantly higher than those in the S0.1 group (p < 0.05), including for glycogen synthase kinase, glucose-6-phosphatase catalytic subunit 2, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, glucose transporter 4, and malate dehydrogenase. The expression of mRNA such as fatty acid synthase, acetyl-CoA carboxylase, and sterol regulatory element-binding protein 1 was significantly lower in the S0.1 group than in the S0 group, while the expression of carnitine acyltransferase 1, acyl-CoA synthetase, and acyl-CoA dehydrogenase genes was significantly higher in the S0 group (p < 0.05). In summary, glycogen synthesis, gluconeogenesis, and the arachidonic acid metabolism pathway were inhibited by 0.1% steroidal saponins, and glycogenolysis, glycolysis, the tricarboxylic acid cycle, and the fatty acid ß-oxidation pathway were activated. This study aims to provide a reference for the formulation of grouper feeds with a higher crude-lipid level.

5.
Fish Shellfish Immunol ; 141: 109003, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37604266

RESUMEN

Glutamine addition can improve immunity and intestinal development in fish. This study examined the protective roles of glutamine on growth suppression and enteritis induced by glycinin in juvenile hybrid groupers (female Epinephelus fuscoguttatus × male Epinephelus lanceolatus). The experiment set four isonitrogenous and isolipidic trial diets: a diet containing 10% glycinin (11S), 10% of 11S diet supplemented with 1% or 2% alanine-glutamine (1% or 2% Ala-Gln), and a diet containing neither 11S nor Ala-Gln (FM). A feeding trial was conducted in hybrid grouper for 8 weeks. Weight gain and specific growth rates in Groups 1% and 2% Ala-Gln were significantly higher than those of the 11S group but were similar to those of the FM group. The intestinal muscular layer thickness, plica height and width of the 2% Ala-Gln group were significantly higher than those of Group 11S. The enterocyte proliferation efficiency of the 11S group was significantly lower compared to other groups. Compared with the 11S group, Groups 1% and 2% Ala-Gln fish had increased intestinal lysozyme activities, complement 3 and immunoglobulin M as well as cathelicidin contents. The mRNA levels of tnf-α, il-1ß, ifn-α, and hsp70 genes were more downregulated in Groups 1% and 2% Ala-Gln than in Group 11S. Compared with FM group, fish from the 11S group had significantly lower mRNA levels of myd88, ikkß, and nf-κb p65 genes. These three values in the 2% Ala-Gln group were significantly lower than those in Group 11S but not significantly different from those of Group FM. The relative abundance of Vibrio in Group 11S was higher than that in Groups FM and 2% Ala-Gln. Intestinal glutamine, glutaminase, glutamic acid, α-ketoglutarate, malate dehydrogenase and ATP contents were higher in Groups 1% and 2% Ala-Gln than in Group 11S. These results suggest that glutamine is a useful feed additive to enhance growth and intestinal immunity, alleviate inflammation, and modulate gut microbiota in hybrid grouper fed high-dose glycinin.


Asunto(s)
Lubina , Glutamina , Animales , Femenino , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , ARN Mensajero/genética , Proteínas de Soja
6.
Aquac Nutr ; 2023: 6723677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424881

RESUMEN

Clostridium autoethanogenum protein (CAP) is an economical and alternative protein source. Here, three experimental diets were formulated with CAP replacing 0% (CAP-0), 30% (CAP-30), and 60% (CAP-60) of fishmeal to investigate the alterations of structure integrity, fatty acids profiles, and lipid metabolism in the muscle of pearl gentian grouper. With increasing levels of CAP substitution, the percentages of 16 : 0 or 18 : 0 were decreased in triglycerides (TG) and diacylglycerols (DG); 18 : 1 or 18 : 2 was increased at the sn-1 and sn-2 positions in phosphatidylethanolamines; 20 : 5n-3 was increased in TG and DG. The phosphatidylcholines (PC) (18 : 3/20 : 5), PC(22 : 6/17 : 1), and sphingomyelins (d19 : 0/24 : 4) were identified as potential lipid biomarkers between CAP treatments. The CAP-30 treatment enhanced lipolysis and lipogenesis, while the CAP-60 treatment inhibited lipogenesis. In conclusion, fishmeal replacement with CAP affected the lipid characteristics and lipid metabolism, whereas it did not affect the structural integrity and fatty acids profiles in the muscle of pearl gentian grouper.

7.
Anim Nutr ; 14: 163-184, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37448647

RESUMEN

Several reports have revealed the vital role that probiotics play in fish growth and health. However, few works are available for host gut-derived probiotics on the growth, immunity, and gut microbiota of fish, especially in hybrid grouper (♀Epinephelus fuscoguttatus × â™‚Epinephelus lanceolatus) due to their isolation difficulty and functional verification. This study aimed at assessing 3 host gut-derived Bacillus species' effects on the growth, immune and antioxidant-biochemical responses, haematological parameters, intestinal morphology, immune-related gene expression, gut microbiota, and disease resistance against Vibrio harveyi in hybrid grouper. A total of 480 hybrid grouper (initial weight = 9.03 ± 0.02 g) were randomly allotted into 4 groups, namely, the group fed a basal diet without probiotic inclusion (control, B0), the group fed the basal diet with Bacillus velezensis GPSAK4 (BV), the group fed the basal diet with Bacillus subtilis GPSAK9 (BS), and the group fed the basal diet with Bacillus tequilensis GPSAK2 (BT) strains at 1.0 × 109 CFU/g. After a 6-week feeding trial, the results revealed significant improvements (P < 0.05) in the growth performance, whole fish-body proximate composition, blood haematological parameters, serum, liver, and intestinal biochemical indexes, intestinal morphology, and protection against V. harveyi pathogen in the probiotic-treated groups compared with the untreated. Additionally, the expressions of intestinal tight junction genes (occludin and ZO1), pro- and anti-inflammatory genes, including IL1ß, IL6, IL8, TNFα, MyD88, IL10, and TGFß, were upregulated (P < 0.05) after Bacillus species administration. Host gut-derived Bacillus supplementation shaped the gut microbiota by significantly increasing (P < 0.05) the relative abundance of Proteobacteria, Bacteroidetes, Actinobacteria (except the BS group), Acidobacteria (except the BT group), Cyanobacteria (except the BV and BT groups), and Verrucomicrobia phyla, as well as known beneficial genera (Romboutsia, Turicibacter, Epulopiscium, Clostridium_sensu_stricto 1 and 13, Lactobacillus, and Bacillus), but significantly decreased (P < 0.05) the abundance of Firmicutes, Chloroflexi, and Fusobacteria phyla, and purported pathogenic genera (Staphylococcus and Photobacterium) compared with the control group. Collectively, the results suggest that B. velezensis GPSAK4, B. subtilis GPSAK9 (especially this strain), B. tequilensis GPSAK2 dietary supplementation at 1.0 × 109 CFU/g has positive effects on the intestinal health of hybrid grouper via microbial composition modulation, thus enhancing the assimilation and absorption of nutrients to boost fish growth, immunity, and disease resistance.

8.
Aquac Nutr ; 2023: 1184252, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303606

RESUMEN

An 8-week feeding trial was conducted to investigate the effects of C. butyricum on the growth performance, microbiota, immunity response, and disease resistance in hybrid grouper fed with cottonseed protein concentrate (CPC) replacement of fishmeal. Six groups of isonitrogenous and isolipid diets were formulated including a positive control group (50% fishmeal, PC), a negative control group (CPC replaced 50% of fishmeal protein, NC), and Clostridium butyricum supplemented with 0.05% (C1, 5 × 108 CFU/kg), 0.2% (C2, 2 × 109 CFU/kg), 0.8% (C3, 8 × 109 CFU/kg), and 3.2% (C4, 3.2 × 1010 CFU/kg), respectively, to the NC group. The results showed that weight gain rate and specific growth rate were significantly higher in the C4 group than that in the NC group (P < 0.05). After supplementation with C. butyricum, the amylase, lipase, and trypsin activities were significantly higher than the NC group (P < 0.05; except group C1), and the same results were obtained for intestinal morphometry. The intestinal proinflammatory factors were significantly downregulated, and the anti-inflammatory factors were significantly upregulated in the C3 and C4 groups compared with the NC group after supplementation with 0.8%-3.2% C. butyricum (P < 0.05). At the phylum level, the PC, NC, and C4 groups were dominated by the Firmicutes and the Proteobacteria. At the genus level, the relative abundance of Bacillus in the NC group was lower than that in the PC and C4 groups. After supplementation with C. butyricum, grouper in the C4 group showed significantly higher resistance to V. harveyi than the NC group (P < 0.05). Above all, taking into account the effects of immunity and disease resistance, it was recommended to supplement 3.2% C. butyricum in the diet of grouper fed the replacement of 50% fishmeal protein by CPC.

9.
Front Vet Sci ; 10: 1162599, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255998

RESUMEN

This experiment was conducted to assess the possibility of replacing fishmeal (FM, Fishmeal content of the control group: 30%) with corn gluten meal (CGM) at the following levels: 0, 10, 20, 30, 40, and 60%. The experimental diets, formulated to be isonitrogenous and isocaloric, were studied for their effects on growth, feed utilization, digestive enzyme activity and apparent nutrient digestibility in juvenile white shrimps, Litopenaeus vannamei (initial mean weight = 0.71 ± 0.01 g). Seven hundred twenty healthy and uniformed-size shrimp were distributed to six groups of three replicates, each with 40 shrimp in each tank (0.5 m3). Each experimental diet was fed to shrimp four times daily to apparent satiation at 7:00, 11:30, 17:00, and 21:30, respectively, for 8 weeks. At the end of the experiment, the total weight of fish in each tank was weighed and randomly selected for testing, including fish nutrient composition and digestive enzyme activity. Results showed that no significant differences were observed in the weight gain rate (WGR), feed coefficient rate (FCR) and specific growth rate (SGR) of shrimp after 30% FM was replaced with CGM (P > 0.05), but these indicators significantly decreased at higher replacement rates. As CGM content increased, the content of crude protein and phosphorus in the shrimp decreased significantly (P < 0.05), whereas the crude fat content first increased significantly and then decreased (P < 0.05). Compared to the control group, the protease activity was significantly lower in the 40% group and the lipase activity was significantly lower in the 60% group (P < 0.05). Amylase activity was significantly increased with increasing CGM levels (P < 0.05). The digestibility of protein and lipid was significantly reduced by CGM replacement of more than 30% FM (P < 0.05). As CGM content increased, the digestion of energy and dry matter was first significantly increased and then significantly decreased (P < 0.05). In the 30, 40, and 60% groups, the digestibility of all amino acids (AA), except methionine (Met), arginine (Arg) and serine (Ser), was significantly lower than in the control group (P < 0.05). In summary, FM could be partially replaced by CGM in the feed of L. vannamei. Based on the broken-line regression analysis of WGR, the optimal dietary CGM replacement was 27.47%.

10.
Microbiol Res ; 272: 127384, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37141852

RESUMEN

In this study, a strain of Clostridium butyricum was isolated from the intestine of Litopenaeus vannamei with the method of anaerobic microbial isolation and culture. Next, the probiotic properties of LV1 were evaluated with susceptibility tests, tolerance tests, and whole genome sequencing in vivo and in vitro, followed by the analysis of the effect of LV1 on the growth performance, immune response, and disease resistance of Litopenaeus vannamei. According to the results, the 16 S rDNA sequence of LV1 was 100% homolofgous to the reference sequence of Clostridium butyricum. Moreover, LV1 was resistant to several antibiotics including amikacin, streptomycin, and gentamicin and highly tolerated artificial gastric and artificial intestinal fluids. The whole genome of LV1 was 4625,068 bp in size and included 4336 coding genes. Among these genes, GO, KEGG, and COG databases exhibited the highest number of genes annotated to metabolic pathway classes and 105 genes annotated as glycoside hydrolases. Meanwhile, 176 virulence genes were predicted. The use of diets supplemented with 1.2 × 109 CFU/kg of LV1 live cells significantly increased the weight gain and specific growth rates of Litopenaeus vannamei and the activity of serum superoxide dismutase, glutathione peroxidase, acid phosphatase, and alkaline phosphatase (P < 0.05). Meanwhile, the use of these diets markedly improved the relative expression of intestinal immunity- and growth-related genes. In conclusion, LV1 has excellent probiotic properties. Specifically, the addition of 1.2 × 109 CFU/kg of LV1 live cells to the diet improved the growth performance, immune response, and disease-resistance of Litopenaeus vannamei.


Asunto(s)
Clostridium butyricum , Resistencia a la Enfermedad , Humanos , Resistencia a la Enfermedad/genética , Clostridium butyricum/genética , Suplementos Dietéticos/análisis , Dieta , Secuenciación Completa del Genoma , Alimentación Animal/análisis , Inmunidad Innata
11.
Anim Nutr ; 13: 426-434, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37251277

RESUMEN

This study was conducted to evaluate the influence of dietary lysophospholipids combined with 1% dietary fish oil reduction on the growth performance and hepatic lipid metabolism of largemouth bass (Micropterus salmoides). Five isonitrogenous feeds were prepared with lysophospholipids at 0% (fish oil group, FO), 0.05% (L-0.05), 0.1% (L-0.1), 0.15% (L-0.15) and 0.2% (L-0.2), respectively. The dietary lipid was 11% in the FO diet and 10% in the other diets. Largemouth bass were fed for 68 d (initial body weight = 6.04 ± 0.01 g) with 4 replicates per group and 30 fish per replicate. The results showed that the fish fed diet containing 0.1% lysophospholipids had higher digestive enzyme activity and obtained better growth performance compared to the fish fed FO diet (P < 0.05). The feed conversion rate in the L-0.1 group was significantly lower than that in the other groups. Serum total protein and triglyceride contents in L-0.1 group were significantly higher than those in other groups (P < 0.05) and the contents of total cholesterol and low-density lipoprotein cholesterol in L-0.1 group were significantly lower than those in FO group (P < 0.05). The activity and genes expression of hepatic glucolipid metabolizing enzymes in L-0.15 group were significantly increased compared to those in FO group (P < 0.05). Reducing 1% fish oil along with 0.1% lysophospholipids added to the feed could improve the digestion and absorption of nutrients, enhance the activity of liver glycolipid metabolizing enzymes, and thus effectively promote the growth of largemouth bass.

12.
Animals (Basel) ; 13(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37048450

RESUMEN

Understanding the molecular mechanisms involved in adaptation to alternate diets has become a significant concern, as increasing amounts of fishmeal (FM) protein in aquafeeds are being substituted with plant protein. Thus, the goal of this study was to assess growth performance, quality, and liver function of juvenile Sillago sihama (S. sihama) through growth indices, whole-body composition, histology of the liver, and RNA-sequencing (RNA-seq), after they were fed a formulated diet with 64% low-gossypol cottonseed meal (LCSM) for 56 days, compared to those fed a traditional FM-based diet. Indicators of growth, including final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio (PER), and condition factor (CF), were considerably lower in the 64% LCSM (R64) group than in the FM diet group. In the R64 diet, the whole crude lipid was significantly lower than in the FM diet. The hematoxylin-eosin section showed that dietary high levels of LCSM resulted in diffuse lipid vacuolation in the liver of S. sihama. According to a liver transcriptome analysis, high LCSM intake in the diet significantly impacted lipid synthesis and catabolism, elevated pathways for cholesterol synthesis, blocked several amino acid metabolic pathways, and adversely affected hepatic gluconeogenesis and glycolysis. The findings of this study indicate that feeding high levels of LCSM in S. sihama is harmful to the growth of the organism and can harm the liver's structural integrity, as well as obstruct the normal metabolism of amino acids, lipids, and carbohydrates. Therefore, it is not recommended to substitute LCSM for high levels of FM in the diet of S. sihama.

13.
Metabolites ; 13(2)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36837925

RESUMEN

High-lipid diets are attributed to excessive lipid deposition and metabolic disturbances in fish. The aim of this experiment was to investigate the effects of steroidal saponins on growth performance, immune molecules and metabolism of glucose and lipids in hybrid groupers (initial weight 22.71 ± 0.12 g) fed high-lipid diets. steroidal saponins (0%, 0.1% and 0.2%) were added to the basal diet (crude lipid, 14%) to produce three experimental diets, designated S0, S0.1 and S0.2, respectively. After an 8-week feeding trial, no significant differences were found between the S0 and S0.1 groups in percent weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio and protein deposition rate (p > 0.05). All those in the S0.2 group were significantly decreased (p < 0.05). Compared to the S0 group, fish in the S0.1 group had lower contents of serum triglyceride and low-density lipoprotein cholesterol and higher high-density lipoprotein cholesterol and glucose (p < 0.05). The activities of superoxide dismutase, catalase and glutathione peroxidase were significantly higher, and malondialdehyde contents were significantly lower in the S0.1 group than in the S0 group (p < 0.05). Hepatic triglyceride, total cholesterol and glycogen were significantly lower in the S0.1 group than in the S0 group (p < 0.05). Activities of lipoprotein lipase, total lipase, glucokinase and pyruvate kinase, and gene expression of lipoprotein lipase, triglyceride lipase and glucokinase, were significantly higher in the S0.1 group than in the S0 group. Interleukin-10 mRNA expression in the S0.1 group was significantly higher than that in the S0 group, while the expression of interleukin-6 and tumor necrosis factor-α genes were significantly lower than those in the S0 group. In summary, adding 0.1% steroidal saponins to a high-lipid diet not only promoted lipolysis in fish livers, but also activated glycolysis pathways, thus enhancing the utilization of the dietary energy of the groupers, as well as supporting the fish's nonspecial immune-defense mechanism.

14.
Metabolites ; 13(1)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677024

RESUMEN

An optimal carbohydrate-to-lipid (CHO: L) ratio facilitates fish growth and protein conservation, and carbohydrase promotes nutrient absorption. Therefore, an 8-week feeding trial was conducted to investigate the effects of carbohydrase supplementation on growth performance, intestinal digestive enzymes and flora, glucose metabolism enzymes and glut2 gene expression in juvenile hybrid grouper (Epinephelus fuscoguttatusâ™€× Epinephelus lanceolatus♂) fed different CHO: L ratios diets. L, M, and H represent CHO:L ratios of 0.91, 1.92 and 3.91, respectively. LE, ME, and HE represent CHO:L ratios of 0.91, 1.92, 3.91, respectively, supplemented with the same ratio of carbohydrase. Results showed that weight gain rate (WGR) and specific growth rate (SGR) reached a maximum in group M and were significantly enhanced by carbohydrase (p < 0.05). Crude lipid content decreased significantly with an increase in the dietary CHO:L ratio (p < 0.05). Significant increases in the trypsin (TRY) and amylase (AMS) activities and significant decreases in the lipase (LPS) activity were observed with increasing dietary CHO:L ratio, and the former two were significantly promoted by carbohydrase (p < 0.05). The content of liver and muscle glycogen increased significantly with the increasing dietary CHO:L ratio but decreased significantly after carbohydrase supplementation (p < 0.05). The glucokinase (GK), pyruvate kinase (PK), Phosphate 6 fructokinase-1 (PFK-1) and phosphoenolpyruvate kinase (PEPCK) activities increased significantly with increasing dietary CHO:L ratio (p < 0.05). Glut2 mRNA expression decreased significantly in liver and increased significantly in intestine with increasing dietary CHO:L ratio (p < 0.05). By linear discriminant analysis (LDA), the abundance of Alistipe was significantly higher in Group ME than in Group M. These results suggested that hybrid grouper can only moderately utilize dietary carbohydrate and lipid in diet, and a certain amount of high glycemic lipids occurred when fed with high-carbohydrate diets. By the weight gain for basis, the supplementation of carbohydrase in Group H with amylase, glycosylase, and pullulanase in a 1:1:1 ratio effectively lowered glycemic lipids, promoted the growth of grouper, digestive enzymes activities and carbohydrate metabolic enzyme, and glut2 gene expression in intestine, effectively balancing the negative effects of high-carbohydrate diet and improving the utilization of carbohydrate.

15.
Anim Nutr ; 12: 171-185, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36712400

RESUMEN

Due to diminishing fish meal (FM) supplies, superb protein (PRO) sources are needed for aquaculture, such as soy-based PRO. However, these can cause enteritis and even intestinal injury in fish when used at high proportions in feed. This research examines the effects of substituting soybean protein concentrate (SPC) for FM on the growth performance and intestinal balance of pearl gentian groupers and investigates the mechanism of SPC-induced enteritis. Experimental fish (n = 720) were fed 1 of 3 following diets: (1) a 50% FM diet (control), (2) a diet with 20% of the FM substituted with SPC (group SPC20), and (3) a 40% SPC-substituted diet (SPC40). Fish were fed for 10 wk iso-nitrogenous (50% PRO) and iso-lipidic (10% lipid) diets. Groups SPC20 and SPC40 showed significantly lower developmental performance and intestinal structures than control. Group SPC40 had significantly higher expressions of pro-inflammatory-related genes, such as interleukin 1ß (IL1ß), IL12, IL17 and tumor necrosis factor α and significantly lower expressions of anti-inflammatory-related genes, such as IL5, IL10 and transforming growth factor ß1. Biochemical and 16S high-throughput sequencing showed that the abundance and functions of intestinal flora in group SPC40 were significantly affected (P < 0.05), and there were significant correlations between operational taxonomic unit abundance variations and inflammatory gene expressions at genus level (P < 0.05). The second- and third-generation full-length transcriptome sequence was used to analyze the mechanism of SPC-induced enteritis in pearl gentian groupers, which showed that enteritis induced by SPC may be caused by disturbances to intestinal immune function induced by an imbalance in intestinal nutrition and metabolism, such as the intestinal immunity network for IgA production pathway. However, it remains unclear as to which intestinal immune or nutritional imbalance is most important in enteritis development. This study provides a basis for further research into soy PRO-related enteritis in fish.

16.
Metabolites ; 12(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36557306

RESUMEN

Groupers with an initial body weight of 9.10 ± 0.03 g were selected to investigate whether dietary addition of 0 (G0) and 1800 mg/kg glycerol monolaurate (GML, G1800) could alleviate the oxidative stress response and intestinal flora imbalance after 0, 6, 12, and 24 h of salinity change in grouper. Experimental results show that the dietary addition of GML significantly reduced the liver MDA content and increased the SOD activity of grouper. The gene expression of CAT and SOD increased and then decreased with time after adding 1800 mg/kg GML, and the highest values were significantly higher than those of the control group. Salinity change had a slight effect on the top four intestinal flora composition of grouper at 0, 12, and 24 h, with changes occurring only at 6 h when Cyanobacteria replaced Actinobacteria. The addition of dietary GML slowed down the intestinal flora disorder, inhibited the colonization of harmful bacterium Vibrio, and promoted the abundance of beneficial bacterium Bacillus. In conclusion, dietary GML significantly reduced the oxidative damage caused by sudden changes in salinity, improved the antioxidant capacity, and alleviated the intestinal flora imbalance in juvenile grouper.

17.
Metabolites ; 12(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36355172

RESUMEN

In a context where the search for plant-derived additives is a hot topic, glycerol monolaurate (GML) was chosen as our subject to study its effect on grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Seven gradient levels of GML (0, 600, 1200, 1800, 2400, 3000, and 3600 mg/kg) were used for the experiment. Based on our experiments, 1800 mg/kg GML significantly increased the final body weight (FBW) and weight gain rate (WGR). GML increased the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased malondialdehyde (MDA). Adding 1800 mg/kg GML also significantly increased the levels of lauric acid (C12:0) (LA), n-3 polyunsaturated fatty acids (PFA), and the n-6 PFA-to-n-3/n-6 ratio, while significantly decreasing the levels of saturated fatty acids (SFA). Dietary supplementation with GML significantly inhibited the expression of pro-inflammatory factors and reduced the occurrence of inflammation. GML improved intestinal flora and the abundance of beneficial bacteria (Bacillus, Psychrobacter, Acinetobacter, Acinetobacter, Stenotrophomonas, and Glutamicibacter). It provides a theoretical basis for the application of GML in aquafeed and greatly enhances the possibility of using GML in aquafeed. Based on the above experimental results, the optimum level of GML in grouper feed is 1800 mg/kg.

18.
Fish Physiol Biochem ; 48(6): 1521-1538, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36210393

RESUMEN

Some diseases related to lipid metabolism increase yearly in cultured fish, and the farnesoid X receptor (FXR) is a nuclear protein that plays a key role in inflammatory responses and lipid metabolism. However, the roles of FXR in hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) remain poorly understood. The main objective of this study was to explore the roles of hepatic FXR in triggering the immune response and the potential functions of FXR in regulating the lipid metabolism. In the present study, the full-length sequence of fxr from hybrid grouper was cloned and characterized for the first time. Upon the Vibrio parahaemolyticus stimulation, the transcriptional level of fxr was rapidly elevated in the head kidney tissue in the early stage of infection. In vivo and vitro, activation of FXR by obeticholic acid (OA) significantly increased the concentrations and mRNA levels of hepatic inflammatory cytokines. These effects were inversed when FXR was inhibited by guggulsterone (GU). Moreover, the activation of FXR to suppress the PI3K/AKT/mTOR signaling pathway improves hepatic lipid metabolism and reduces hepatic lipid accumulation in vivo and vitro. In addition, the inhibition of FXR activated the PI3K/AKT/mTOR pathway, decreased the lipolysis and increased the lipogenesis, and subsequently increased the lipid accumulation in fish. These results revealed the positive roles of FXR in triggering immune responses and improving lipid metabolism and accumulation in hybrid grouper.


Asunto(s)
Lubina , Metabolismo de los Lípidos , Animales , Lubina/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hígado/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Inmunidad , Lípidos/farmacología
19.
Fish Shellfish Immunol ; 131: 105-118, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36198380

RESUMEN

Artemisinin (ART) is a kind of Chinese herbal medicine worth exploring, which obtains various physiological activities. In order to study the prebiotic effect of ART on Litopenaeus vannamei fed cottonseed protein concentrate meal diets, six groups of isonitrogenous and isolipid diets were prepared (including the fish meal control group, FM; cottonseed protein concentrate replacing 30% fishmeal protein and supplementing ART groups: ART0, ART0.3, ART0.6, ART0.9, and ART1.2). The feeding trials was lasted for 56 days. The results showed that the final body weight, weight gain and specific growth rate of the ART0.6 group were the highest, yet the feed coefficient rate of the ART0.6 group was the lowest significantly (P < 0.05). There was no significant difference in survival rate among treatments (P > 0.05). In serum, the content of malondialdehyde in ART0 group was the highest (P < 0.05); the activities of superoxide dismutase, catalase, phenol oxidase and lysozyme increased firstly and then decreased among the ARTs groups (P < 0.05). The activities of intestinal digestive enzymes (including the trypsin, lipase and amylase) showed an upward trend among the ARTs groups (P < 0.05). The histological sections showed that the intestinal muscle thickness, fold height and fold width in the FM group were significantly better than those in the ART0 group; while the mentioned above morphological indexes in the ART0 group were significantly lowest among the ARTs groups (P < 0.05). Sequencing of intestinal microbiota suggested that the microbial richness indexes firstly increased and then decreased (P < 0.05); the bacterial community structure of each treatment group was almost close; the relative abundance of pathogenic bacteria decreased significantly (P < 0.05), such as the Proteobacteria and Cyanobacteria at phylum level, besides the Vibrio and Candidatus Bacilloplasma at genus level. In intestinal tissue, the relative expression levels of TOLL1, TRAF6 and Pehaeidih3 showed up-regulated trends, while the expression of Crustin and LZM firstly up-regulated and then down-regulated (P < 0.05). The challenge experiment suggested that the cumulative mortality of FM group was significantly lower than that of ART0 group; besides the cumulative mortality firstly increased and then decreased between the ARTs groups (P < 0.05). In conclusion, the dietary supplementation of ART can improve the growth, antioxidant capacity, immune response, gut health and disease resistance of the shrimp. To be considered as a dietary immune enhancer, the recommended supplementation level of ART in shrimp's cottonseed protein concentrate meal diets is 0.43%.


Asunto(s)
Artemisininas , Penaeidae , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/fisiología , Antioxidantes/farmacología , Aceite de Semillas de Algodón , Alimentación Animal/análisis , Resistencia a la Enfermedad , Dieta/veterinaria , Artemisininas/farmacología , Suplementos Dietéticos/análisis
20.
Fish Shellfish Immunol ; 131: 137-149, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36206997

RESUMEN

The study evaluated the effects of dietary phosphorus supplementation on the fishmeal replacement with Clostridium autoethanogenum protein (CAP) in the diet of L. vannamei. Four isonitrogenous and isolipid diets were formulated: the PC diet contains 25% fishmeal, the NC, P1 and P2 diets were replaced 40% fishmeal with CAP and supplemented with 0, 0.8 and 1.6% NaH2PO4 respectively (equivalent to dietary phosphorus level of 0.96%, 1.12% and 1.27%). Sampling and V. parahaemolyticus challenge test were conducted after 50-day-feeding (initial shrimp weight 1.79 ± 0.02 g). The results showed that there were no significant differences in the growth performance of shrimp among the 4 groups. The expressions of dorsal in the gut were significantly lower in shrimp fed the P1 and P2 diets than shrimp fed the NC diet and the expression of peroxinectin in the gut was lower in shrimp fed the NC diet than others. The cumulative mortality of shrimp after V. parahaemolyticus challenge was significantly lower in shrimp fed the P2 diet than those fed the NC diet. After the challenge, genes expressions related to the prophenoloxidase activating system (proPO, lgbp, ppaf) were inhibited in the hepatopancreas of shrimp fed NC diet but activated in shrimp fed the P1 diet compared to those fed the PC diet. The AKP and T-AOC activities were higher in shrimp fed the P2 diet than those fed the other diets. The thickness of muscle layer of shrimp fed the P1 diet was thicker than that in the other groups, and significant stress damage happened in the midgut of the shrimp fed the NC diet. The abundance of Pseudoalteromonas, Haloferula and Ruegeria in shrimp fed the P1 diet was higher than those fed the other diets, while Vibrio in shrimp fed the P2 diet was higher than those fed the other diets. This indicated that a low fishmeal diet with dietary phosphorus level of 1.12% could improve the histology, enhance immune response, and increase the abundance of beneficial bacteria in the gut of shrimp. The low fishmeal diet with dietary phosphorus level of 1.27% could improve disease resistance and antioxidant capacity, but there was a possibility of damage to the gut histology as well as increasing abundance of Vibrio in the gut microbiota of shrimp.


Asunto(s)
Penaeidae , Fósforo Dietético , Vibrio , Animales , Fósforo Dietético/farmacología , Alimentación Animal/análisis , Fósforo , Inmunidad Innata , Dieta/veterinaria , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...