Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Toxicol Appl Pharmacol ; 483: 116800, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38219984

RESUMEN

Nasopharyngeal carcinoma, a malignant tumor prevalent in southeast Asia and north Africa, still lacks effective treatment. Esketamine, an N-methyl-D-aspartatic acid (NMDA) receptor (NMDAR) antagonist, is widely used in clinical anesthesia. Emerging evidence suggests that esketamine plays an important role in inhibiting tumor cell activity. However, the underlying mechanisms of esketamine on nasopharyngeal carcinoma remain unknown. In this study, we found that esketamine inhibited the proliferation and migration of nasopharyngeal carcinoma cells. Mechanically, transcriptome sequencing and subsequent verification experiments revealed that esketamine promoted the apoptosis of nasopharyngeal carcinoma cells through endoplasmic reticulum stress PERK/ATF4/CHOP signaling pathway mediated by NMDAR. Additionally, when combined with esketamine, the inhibitory effect of cisplatin on the proliferation of nasopharyngeal carcinoma cells was significantly enhanced. These findings provide new insights into future anti-nasopharyngeal carcinoma clinical strategies via targeting the NMDAR/PERK/CHOP axis alone or in combination with cisplatin.


Asunto(s)
Ketamina , Neoplasias Nasofaríngeas , eIF-2 Quinasa , Humanos , eIF-2 Quinasa/metabolismo , Cisplatino/farmacología , Carcinoma Nasofaríngeo/tratamiento farmacológico , Apoptosis , Neoplasias Nasofaríngeas/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción Activador 4/metabolismo
2.
Adv Healthc Mater ; 12(27): e2301243, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37463303

RESUMEN

The mortality rate of sepsis remains high despite improvements in the diagnosis and treatment of sepsis using symptomatic and supportive therapies, such as anti-infection therapy and fluid resuscitation. Nucleic acid-based drugs have therapeutic potential, although their poor stability and low delivery efficiency have hindered their widespread use. Herein, it is confirmed that miR-223 can polarize proinflammation M1 macrophages to anti-inflammation M2 macrophages. A pH-sensitive nano-drug delivery system comprising ß-cyclodextrin-poly(2-(diisopropylamino)ethyl methacrylate)/distearoyl phosphoethanolamine-polyethylene glycol (ß-CD-PDPA/DSPE-PEG) is synthesized and developed to target M1 macrophages and miR-223 is encapsulated into nanoparticles (NPs) for sepsis treatment. NPs/miR-223 demonstrated in vitro pH responsiveness with favorable biosafety, stability, and high delivery efficiency. In vivo studies demonstrate that NPs/miR-223 are preferentially accumulated and retained in the inflammation site, thereby reducing inflammation and improving the survival rate of mice with sepsis while exhibiting ideal biosafety. Mechanically, NPs/miR-223 regulates macrophage polarization by targeting Pknox1 and inhibiting the activation of the NF-κB signaling pathway, thereby achieving an anti-inflammatory effect. Collectively, it is demonstrated that the miRNA delivery vector described here provides a new approach for sepsis treatment and accelerates the advancement of nucleic acid drug therapy.


Asunto(s)
Ciclodextrinas , MicroARNs , Sepsis , Animales , Ratones , MicroARNs/genética , Macrófagos/metabolismo , Inflamación/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Homeodominio/metabolismo
3.
Pharmaceutics ; 15(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242778

RESUMEN

Cyclodextrins (CyDs) in nano drug delivery systems have received much attention in pursuit of good compatibility, negligible toxicity, and improved pharmacokinetics of drugs. Their unique internal cavity has widened the application of CyDs in drug delivery based on its advantages. Besides this, the polyhydroxy structure has further extended the functions of CyDs by inter- and intramolecular interactions and chemical modification. Furthermore, the versatile functions of the complex contribute to alteration of the physicochemical characteristics of the drugs, significant therapeutic promise, a stimulus-responsive switch, a self-assembly capability, and fiber formation. This review attempts to list recent interesting strategies regarding CyDs and discusses their roles in nanoplatforms, and may act as a guideline for developing novel nanoplatforms. Future perspectives on the construction of CyD-based nanoplatforms are also discussed at the end of this review, which may provide possible direction for the construction of more rational and cost-effective delivery vehicles.

4.
Alcohol Clin Exp Res (Hoboken) ; 47(7): 1261-1270, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37128649

RESUMEN

BACKGROUND: Sensitivity to ethanol provides an index of the predisposition to recover from unconsciousness induced by a dose of ethanol. The role of the G protein-coupled receptor 158 (GPR158) in modulating sensitivity to the sedative-hypnotic effect of ethanol has not been investigated. METHODS: Loss of righting reflex (LORR) is a behavioral indicator of hypnosis in rodents. In this study, Gpr158-/- mice and wild-type (WT) littermates (n = 8/genotype) were tested using LORR induced by a dose of 3.5 g/kg ethanol, an open-field test (OFT), and a measure of blood ethanol concentration. The OFT was used to examine the role of GPR158 in the ethanol effect on motor activity in Gpr158-/- mice (n = 6/genotype). We also tested CamK2A-Cre;Gpr158fl/fl (n = 9) and Vgat-Cre;Gpr158fl/fl mice (n = 10) using the LORR test and OFT to compare with controls (n = 9 and 8, respectively). RESULTS: Gpr158 deficiency prolonged the LORR duration by 110.6%, t(14) = -5.241, p = 0.0001, without altering spontaneous activity, t(14) = -0.718, p = 0.485, or ethanol metabolism, F(1, 8) = 0.259, p = 0.625. Gpr158 knockout did not change the ethanol effect on locomotion, F(1, 10) = 0.262, p = 0.62. The LORR duration increased by 69% in the conditional knockouts of Gpr158 within calcium/calmodulin-dependent protein kinase II alpha-positive (CamK2A+ ) neurons, t(16) = -2.914, p = 0.01, and by 92% in the vesicular GABA transporter-positive (Vgat+ ) neurons, t(9.802) = -2.519, p = 0.023. Locomotion was not altered in Camk2A-Cre;Gpr158fl/fl , t(16) = 0.49, p = 0.631 or Vgat-Cre;Gpr158fl/fl mice, t(16) = 0.035, p = 0.972. CONCLUSIONS: This study reveals the key role of neuronal GPR158 in shaping sensitivity to the sedative-hypnotic effect of ethanol. These findings contribute to our understanding of the neurobiology of ethanol intoxication.

5.
Front Mol Neurosci ; 16: 1071327, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969556

RESUMEN

Depression is a common recurrent psychiatric disorder with a high lifetime prevalence and suicide rate. At present, although several traditional clinical drugs such as fluoxetine and ketamine, are widely used, medications with a high efficiency and reduced side effects are of urgent need. Our group has recently reported that a single administration of salmon calcitonin (sCT) could ameliorate a depressive-like phenotype via the amylin signaling pathway in a mouse model established by chronic restraint stress (CRS). However, the molecular mechanism underlying the antidepressant effect needs to be addressed. In this study, we investigated the antidepressant potential of sCT applied chronically and its underlying mechanism. In addition, using transcriptomics, we found the MAPK signaling pathway was upregulated in the hippocampus of CRS-treated mice. Further phosphorylation levels of ERK/p38/JNK kinases were also enhanced, and sCT treatment was able only to downregulate the phosphorylation level of p38/JNK, with phosphorylated ERK level unaffected. Finally, we found that the antidepressant effect of sCT was blocked by p38 agonists rather than JNK agonists. These results provide a mechanistic explanation of the antidepressant effect of sCT, suggesting its potential for treating the depressive disorder in the clinic.

6.
Biomolecules ; 13(3)2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36979415

RESUMEN

Aberrant expression of G-protein-coupled receptor 158 (GPR158) has been reported to be inextricably linked to a variety of diseases affecting the central nervous system, including Alzheimer's disease (AD), depression, intraocular pressure, and glioma, but the underlying mechanism remains elusive due to a lack of biological and pharmacological tools to elaborate its preferential cellular distribution and molecular interaction network. To assess the cellular localization, expression, and function of GPR158, we generated an epitope-tagged GPR158 mouse model (GPR158Tag) that exhibited normal motor, cognitive, and social behavior, no deficiencies in social memory, and no anxiety-like behavior compared to C57BL/6J control mice at P60. Using immunofluorescence, we found that GPR158+ cells were distributed in several brain regions including the cerebral cortex, hippocampus, cerebellum, and caudate putamen. Next, using the cerebral cortex of the adult GPR158Tag mice as a representative region, we found that GPR158 was only expressed in neurons, and not in microglia, oligodendrocytes, or astrocytes. Remarkably, the majority of GPR158 was enriched in Camk2a+ neurons whilst limited expression was found in PV+ interneurons. Concomitant 3D co-localization analysis revealed that GPR158 was mainly distributed in the postsynaptic membrane, but with a small portion in the presynaptic membrane. Lastly, via mass spectrometry analysis, we identified proteins that may interact with GPR158, and the relevant enrichment pathways were consistent with the immunofluorescence findings. RNA-seq analysis of the cerebral cortex of the GPR158-/- mice showed that GPR158 and its putative interacting proteins are involved in the chloride channel complex and synaptic vesicle membrane composition. Using these GPR158Tag mice, we were able to accurately label GPR158 and uncover its fundamental function in synaptic vesicle function and memory. Thus, this model will be a useful tool for subsequent biological, pharmacological, and electrophysiological studies related to GPR158.


Asunto(s)
Encéfalo , Receptores Acoplados a Proteínas G , Ratones , Animales , Ratones Transgénicos , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Encéfalo/metabolismo , Comunicación Celular
7.
Artículo en Inglés | MEDLINE | ID: mdl-36999692

RESUMEN

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn from the journal "Combinatorial Chemistry & High Throughput Screening".Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

8.
Front Neurosci ; 17: 1288484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292894

RESUMEN

Background: Insomnia has become increasingly prevalent in modern society and is notoriously difficult to treat. Many patients exhibit a poor response to pharmacological interventions. Stellate ganglion block (SGB) has emerged as an effective method for managing insomnia; however, its efficacy may be compromised in some patients, primarily due to a variant vertebral artery anatomy. Case presentation: This case report describes a patient with severe insomnia accompanied by anxiety. Through cervical ultrasound scanning, we identified richly branched cervical arteries at the C6-C7 segment of the vertebral artery, along with anatomical variations, which could pose a heightened risk for the traditional SGB procedure. Therefore, after carefully adjusting the patient's positioning, we proceeded with ultrasound-guided SGB using a lateral paravein out-of-plane approach. Clinical signs of successful insomnia symptoms alleviation were consistently observed after each block utilizing this alternative technique multiple times in a single patient. Conclusion: Our report reveals a new lateral paravein out-of-plane approach for ultrasound-guided SGB to treat insomnia, which might be considered an alternative method. More studies should be carried out to confirm the efficacy of this new approach.

9.
Front Immunol ; 13: 922614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159784

RESUMEN

Background: Macrophages play important roles in diabetes and sepsis-related intestinal injury. Accumulating evidence suggests that microRNAs (miRNAs) act as the fundamental link between macrophage polarization and tissue injury. However, the underlying mechanisms of miRNAs in regulating macrophage polarization-related intestinal injury under diabetes and sepsis conditions remain unclear. Methods: The cecal ligation and puncture (CLP)-induced sepsis models were established in male wild-type (WT) and diabetic mice. Clodronate liposome was used to deplete macrophage. H&E staining, inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6], and intestinal mucosal barrier function markers [occludin, ZO-1, lipopolysaccharide (LPS), and intestinal fatty acid binding protein (iFABP)] were used to assess elevated intestinal damage. miRNA array, RNA-seq, and bioinformatic analysis were performed to detect the miRNA and messenger RNA (mRNA) expression and the potential regulation mechanism. In vitro, RAW264.7 cells were cultured in the absence or presence of high glucose and LPS, miR-3061 mimics, and Snail small interfering RNA stimulation, respectively, for further mechanism studies. Luciferase reporter assay was used to confirm the interplay between miRNA and its target genes. Results: Compared with WT CLP mice, the diabetic CLP mice showed severe intestinal damage characterized by significant increases in Chui's scores, expression of inflammatory cytokines (TNF-α, IL-1ß, and IL-6), serum LPS and iFABP concentration, and significant reductions in tight junction protein occludin and ZO-1 levels. Macrophage depletion reversed the intestinal damage caused by CLP. The bioinformatic analysis revealed that miR-3061/Snail1 might be a potential regulation axis of macrophage polarization. Furthermore, high glucose and LPS stimulation increased M1 macrophage and reduced the levels of miR-3061, which was negatively associated with Snail1 in RAW264.7 cells. Mechanistic studies demonstrated that miR-3061 regulated macrophage polarization by targeting the Snail1 mRNA 3'-untranslated region. Moreover, miR-3061 overexpression suppressed Snail1 expression and inhibited M1 macrophage and inflammatory cytokines. Conclusion: This study elucidated that diabetes exacerbated sepsis-induced intestinal injury by promoting M1 macrophage polarization and further demonstrated that the miR-3061/Sani1 axis may be the potential target of macrophage polarization.


Asunto(s)
Diabetes Mellitus Experimental , MicroARNs , Sepsis , Animales , Ácido Clodrónico , Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Glucosa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/metabolismo , Liposomas/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Ocludina/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Sepsis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regiones no Traducidas
10.
Ann Transl Med ; 10(13): 737, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35957725

RESUMEN

Background: Sepsis-associated acute kidney injury (SA-AKI) is one of the most frequent and serious complications of sepsis. However, the transcriptional regulatory network of the pathophysiological mechanism of the kidney has not been revealed. This study identified new mechanisms in SA-AKI using bioinformatics analyses and laboratory-based experiments. Methods: We performed transcriptomic profiling of mouse kidneys after cecal ligation and puncture (CLP) to mimic clinical sepsis. RNA from kidney samples from the CLP and control groups was isolated and analyzed using bulk messenger RNA (mRNA)-seq. Differentially expressed genes (DEGs) between the two groups were identified, and GO, KEGG and GSEA pathway enrichment analyses were performed. The protein-protein interaction (PPI) network of DEGs and hub genes was analyzed. The hub genes were verified using quantitative real-time polymerase chain reaction (qPCR) or Western blotting. The interaction network, targeted microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) of hub genes were predicted, and the critical miRNA-hub gene regulatory axis was verified using qPCR, Western blotting, malondialdehyde (MDA) determination and flow cytometry. Correlation analyses of N6-adenosine methylation (m6A) RNA methylation regulators and hub genes and m6A modification analysis were performed. Results: A total of 4,754 DEGs were identified between the two groups using high-throughput sequencing. The pathways in which DEGs were enriched included ferroptosis (the highest enrichment score), apoptosis, and the PI3K-Akt, NF-kappa B and IL-17 signaling pathways. Seven (Hmox1, Spp1, Socs3, Mapk14, Lcn2, Cxcl1 and Cxcl12) of the 15 hub genes were involved in the KEGG pathway. mmu-miR-7212-5p-Hmox1 was a key RNA regulatory axis in ferroptosis. m6A RNA methylation modifications were involved in SA-AKI. The correlation analyses showed the close interactions among the m6A RNA methylation regulators and important hub genes. Conclusions: The findings of this study provide new insights into the mechanism regulating the occurrence and progression of SA-AKI. The mmu-miR-7212-5p-Hmox1 axis in ferroptosis and m6A RNA methylation regulators may have potential clinical significance for the future treatment of SA-AKI. The datasets generated for this study can be found in the repository of the GEO database (Series number: GSE186822).

11.
BMC Pulm Med ; 22(1): 192, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35549905

RESUMEN

BACKGROUND: Curcumin has attracted much attention due to its wide range of therapeutic effects. In this study, we used serum collected from patients undergoing one-lung ventilation (OLV) to establish an in vitro acute lung injury (ALI) model to explore the potential protective mechanism of curcumin on ALI. Our study provides a new reference for the prevention and treatment of ALI induced by OLV. METHODS: A549 cells were treated with 20% serum from patients undergoing OLV to establish an in vitro ALI model. Curcumin, at a dose of 40 µg/ml, was administered two hours prior to this model. The levels of inflammation and oxidative stress markers were observed by Western blot, qRT-PCR, ELISA and reactive oxygen species assay. Additionally, the expression of peroxiredoxin 6 (Prdx6) and proteins involved in the NF-κB signaling pathway was evaluated. RESULTS: Twenty percent of serum collected from patients undergoing OLV downregulated the expression of Prdx6, leading to the activation of the NF-κB signaling pathway, which was associated with the subsequent overproduction of inflammatory cytokines and reactive oxygen species. Pretreatment with curcumin restored Prdx6 downregulation and inhibited NF-κB pathway activation by suppressing the nuclear translocation of P65, eventually reducing inflammation and oxidative stress damage in A549 cells. CONCLUSIONS: Prdx6 mediated the protective function of curcumin by inhibiting the activation of the NF-κB pathway in ALI in vitro.


Asunto(s)
Lesión Pulmonar Aguda , Curcumina , Ventilación Unipulmonar , Lesión Pulmonar Aguda/inducido químicamente , Curcumina/efectos adversos , Humanos , Inflamación/etiología , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Ventilación Unipulmonar/efectos adversos , Peroxiredoxina VI/genética , Especies Reactivas de Oxígeno
12.
Mol Nutr Food Res ; 66(5): e2100241, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35072981

RESUMEN

SCOPE: Copy number variation (CNV) of 16p11.2 is a common genetic factor contributing to the etiology of abnormal weight status, while the underlying mechanism is not fully elucidated yet. METHODS AND RESULTS: The 16p11.2 CNV mouse model with microduplication of the 7Slx1b-Sept1 region (dp/+) is evaluated under normal chow conditions. Compared to the wild type littermates (WT), the dp/+ mice exhibit obvious obese phenotype characterized by significant increase in body mass index, fat pad mass, and fat ratio, with visceral-dominant fat deposits at 12-week age. White adipose tissue (WAT), liver tissue, and plasma are sampled to assess the comorbid metabolic syndrome. In dp/+ mice, histopathologic analyses reveal hypertrophic adipocytes and hepatic steatosis; serological examinations show hyperlipemia and hyperinsulinemia. Further, by comparing lipidomic and transcriptomic profiling of epididymal WAT between dp/+ and WT mice, the study finds the triglyceride (TG) accumulation in dp/+ mice in association with the dysfunction of lipid droplets. Validation of TG-metabolism-associated genes in WAT and in primary cultured adipocytes show enhanced TG synthesis and declined TG hydrolysis in the dp/+ model. CONCLUSION: This study elucidates that the imbalanced TG synthesis/hydrolysis in adipocytic lipid droplets may contribute to the hypertrophic obesity and metabolic disorders in mice with 16p11.2 microduplication.


Asunto(s)
Variaciones en el Número de Copia de ADN , Enfermedades Metabólicas , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo de los Lípidos , Enfermedades Metabólicas/metabolismo , Ratones , Obesidad/metabolismo , Triglicéridos/metabolismo
13.
Front Immunol ; 13: 1053754, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713420

RESUMEN

Background: Acute kidney injury is a common and severe complication of sepsis. Sepsis -induced acute kidney injury(S-AKI) is an independent risk factor for mortality among sepsis patients. However, the mechanisms of S-AKI are complex and poorly understand. Therefore, exploring the underlying mechanisms of S-AKI may lead to the development of therapeutic targets. Method: A model of S-AKI was established in male C57BL/6 mice using cecal ligation and puncture (CLP). The data-independent acquisition (DIA)-mass spectrometry-based proteomics was used to explore the protein expression changes and analyze the key proteomics profile in control and CLP group. The methodology was also used to identify the key proteins and pathways. S-AKI in vitro was established by treating the HK-2 cells with lipopolysaccharide (LPS). Subsequently, the effect and mechanism of Cathepsin B (CTSB) in inducing apoptosis in HK-2 cells were observed and verified. Results: The renal injury scores, serum creatinine, blood urea nitrogen, and kidney injury molecule 1 were higher in septic mice than in non-septic mice. The proteomic analysis identified a total of 449 differentially expressed proteins (DEPs). GO and KEGG analysis showed that DEPs were mostly enriched in lysosomal-related cell structures and pathways. CTSB and MAPK were identified as key proteins in S-AKI. Electron microscopy observed enlarged lysosomes, swelled and ruptured mitochondria, and cytoplasmic vacuolization in CLP group. TUNEL staining and CTSB activity test showed that the apoptosis and CTSB activity were higher in CLP group than in control group. In HK-2 cell injury model, the CTSB activity and mRNA expression were increased in LPS-treated cells. Acridine orange staining showed that LPS caused lysosomal membrane permeabilization (LMP). CA074 as an inhibitor of CTSB could effectively inhibit CTSB activity. CCK8 and Annexin V/PI staining results indicated that CA074 reversed LPS-induced apoptosis of HK-2 cells. The JC-1 and western blot results showed that LPS inhibited mitochondrial membrane potential and activated mitochondrial apoptosis pathway, which could be reversed by CA074. Conclusions: LMP and CTSB contribute to pathogenesis of S-AKI. LPS treatment induced HK-2 cell injury by activating mitochondrial apoptosis pathway. Inhibition of CTSB might be a new therapeutic strategy to alleviate sepsis-induced acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Sepsis , Animales , Masculino , Ratones , Lesión Renal Aguda/metabolismo , Apoptosis , Catepsina B/farmacología , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteómica , Sepsis/metabolismo , Humanos , Línea Celular
14.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L266-L275, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33174448

RESUMEN

Postoperative pulmonary complications including acute lung injury (ALI) and acute respiratory distress syndrome have contributed to mortality and morbidity of orthotopic liver transplantation (OLT) with unclear mechanisms. Mast cells (MCs) and polymorphonuclear neutrophils (PMNs) are the main inflammatory cells and participants in the process of ALI. The present study was designed to investigate the role of MCs and PMNs and their potential relation to ALI following OLT. Rat orthotopic autologous liver transplantation (OALT) model was designed to determine lung injury at different time points after liver reperfusion. We also evaluated the function of MCs and the effect of tumor necrosis factor-α (TNF-α) and tryptase on ALI and PMN apoptosis in rats subjected to OALT. Histological scores and inflammatory factor levels as well as PMN apoptosis were measured. Rats suffered from ALI after OALT, which was demonstrated by a collapse of the pulmonary architecture, pulmonary edema, and infiltration of inflammatory cells in alveolar and interstitial spaces, as well as increased levels of proinflammatory cytokines. ALI maximized at 8 h after OALT. However, PMN apoptosis lagged behind the pulmonary injury and maximized at 16 h after OALT, when the acute inflammation resolution initiated. MC stabilization, and tryptase and TNF-α inhibitors could significantly decrease the lung pathophysiologic scores accompanied by an increase in PMN apoptosis. ALI after OALT was associated with MC activation and PMN apoptosis. ALI progression might be affected by delayed PMN apoptosis, which was related to MC activation. Induction of PMN apoptosis might alleviate ALI after OALT.


Asunto(s)
Lesión Pulmonar Aguda , Apoptosis , Trasplante de Hígado/efectos adversos , Neutrófilos , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/terapia , Animales , Modelos Animales de Enfermedad , Masculino , Mastocitos/metabolismo , Mastocitos/patología , Neutrófilos/metabolismo , Neutrófilos/patología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
15.
Biosci Rep ; 40(5)2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32285913

RESUMEN

Neuropathic pain is a kind of chronic pain that is triggered or caused primarily by damage to the nervous system and neurological dysfunction. It's known that dexmedetomidine is a new type of highly selective alpha2-adrenoceptor agonist with sedation, anti-anxiety, analgesic and other effects. However, the function and mechanism of dexmedetomidine on neuropathic pain are not clear. Rat DRG neurons were isolated and identified using immunofluorescence assay. Following treatment with H2O2, dexmedetomidine or ROS inhibitor (NAC), the apoptosis and ROS levels were examined by flow cytometery; apoptosis- and anaerobic glycolysis-related proteins were determined by Western blot assay; glucose consumption, pyruvic acid, lactic acid and ATP/ADP ratios were also measured. The results revealed that dexmedetomidine inhibited H2O2-induced apoptosis and reactive oxygen species (ROS) in rat DRG neurons and in addition, dexmedetomidine down-regulated the expression levels of anaerobic glycolysis-related proteins, significantly reduced glucose, pyruvic acid and lactic acid levels. It also increased the ATP/ADP ratio in H2O2-treated rat dorsal root ganglion (DRG) neurons. Moreover, we also demonstrated that ROS inhibitor (NAC) also inhibited H2O2-induced apoptosis and anaerobic glycolysis in rat DRG neurons. In conclusion, dexmedetomidine suppressed H2O2-induced apoptosis and anaerobic glycolysis activity by inhibiting ROS, in rat DRG neurons. Therefore, dexmedetomidine might play a pivotal role in neuropathic pain by the inhibition of ROS.


Asunto(s)
Dexmedetomidina/farmacología , Glucólisis/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Neuronas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Anaerobiosis/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Dexmedetomidina/uso terapéutico , Modelos Animales de Enfermedad , Ganglios Espinales/citología , Glucosa/análisis , Glucosa/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Neuralgia/inducido químicamente , Neuralgia/patología , Neuronas/patología , Cultivo Primario de Células , Ratas , Especies Reactivas de Oxígeno/antagonistas & inhibidores
16.
Oxid Med Cell Longev ; 2019: 9426368, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827710

RESUMEN

Patients with orthotopic liver transplantation (OLT) frequently develop acute gut injury (AGI), and dexmedetomidine (Dex) has been reported to exert a protective effect against AGI. We investigated whether Dex protects against AGI through antioxidative stress effects by the Nrf2/HO-1 antioxidative signaling pathway. Rats were randomly allocated into a sham group and six orthotopic autologous liver transplantation (OALT) groups receiving different doses of Dex together with/without α 2-adrenergic receptor (AR) blockers. Intestinal tissues were collected to visualize the barrier damage and to measure the indexes of oxidative stress. For in vitro studies, rat intestinal recess epithelial cells (IEC-6) underwent hypoxia/reoxygenation (H/R), and the protective role of Dex was evaluated after α 2A-AR siRNA silencing. OALT resulted in increased oxidative stress, significant intestinal injury, and barrier dysfunction. Dex attenuated OALT-induced oxidative stress and intestinal injury, which was abolished by the pretreatment with the nonspecific α 2A-AR siRNA blocker atipamezole and the specific α 2A-AR siRNA blocker BRL-44408, but not by the specific 2B/C-AR siRNA blocker ARC239. Silencing of α 2A-AR siRNA also attenuated the protective role of Dex on alleviating oxidative stress in IEC-6 cells subjected to H/R. Dex exerted its protective effects by activating Nrf2/HO-1 antioxidative signaling. Collectively, Dex attenuates OALT-induced AGI via α 2A-AR-dependent suppression of oxidative stress, which might be a novel potential therapeutic target for OALT-induced AGI.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Dexmedetomidina/farmacología , Enfermedades Gastrointestinales/prevención & control , Trasplante de Hígado/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Receptores Adrenérgicos alfa 2/metabolismo , Animales , Antioxidantes/farmacología , Enfermedades Gastrointestinales/etiología , Enfermedades Gastrointestinales/metabolismo , Enfermedades Gastrointestinales/patología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/química , Receptores Adrenérgicos alfa 2/genética
17.
Medicine (Baltimore) ; 98(29): e16416, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31335690

RESUMEN

Occupational exposure remains a serious problem for medical staff, especially those working in operation rooms. Hepatitis B virus (HBV) is prevalent in patients undergoing surgery, and anesthesiologists are at risk of occupational acquisition of blood-borne HBV infection. To the best of our knowledge, there are no data about HBV prevalence and vaccinations, as well as attitudes toward sharp injuries and gloving among anesthesiologists in China, where the HBV prevalence is high. To clarify these, the present study was conducted.An electronic questionnaire including HBV markers, gloving during practice, and reporting patterns of sharp injuries was created and sent to anesthesiologists.After excluding 10 uncompleted questionnaires, 1739 questionnaires were included in the final analysis. Of all analyzed anesthesiologists, 1599 (91.9%) had experienced sharp injuries, and 1313 (75.5%) had experienced >1 sharp injury. Considering HBV vaccination histories, 1381 anesthesiologists (79.4%) received 3 vaccination doses, and only half of the immunized anesthesiologists received reminder HBV vaccination doses after work before exposure. There were 696 anesthesiologists (40.0% of all participants) who were ever exposed to HBV, and nearly two-thirds of them (440) were exposed to HBV more than once. There was a more positive attitude toward gloving and double-gloving to reduce HBV exposure.The incidence of occupational HBV exposure among anesthesiologists is high, and its threat should be considered. HBV vaccinations and adherence to postexposure guidelines are recommended. The high prevalence of sharp injuries during anesthesia practice highlights the importance of safe anesthesia practices, such as gloving or double-gloving, especially when in contact with high-risk body fluids.


Asunto(s)
Anestesiólogos/estadística & datos numéricos , Actitud del Personal de Salud , Hepatitis B , Exposición Profesional , Traumatismos Ocupacionales , Gestión de Riesgos/organización & administración , Adulto , China/epidemiología , Femenino , Hepatitis B/epidemiología , Hepatitis B/prevención & control , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Evaluación de Necesidades , Exposición Profesional/análisis , Exposición Profesional/prevención & control , Traumatismos Ocupacionales/clasificación , Traumatismos Ocupacionales/prevención & control , Equipo de Protección Personal , Medición de Riesgo/métodos , Encuestas y Cuestionarios , Vacunación/estadística & datos numéricos
18.
Med Sci Monit ; 24: 6925-6933, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-30269150

RESUMEN

BACKGROUND Effects of liver dysfunction on target-controlled infusion (TCI) with Marsh parameters of propofol remain poorly documented. The purpose of this study was to evaluate the performance of propofol TCI in a cohort of Chinese patients with severe hepatic insufficiency. MATERIAL AND METHODS We assigned 32 patients who underwent liver transplantation to 3 groups according to Child-Turcotte-Pugh (CTP) score. Anesthesia, preceding liver transplantation, was induced and maintained with TCI of 3 µg/mL propofol. Plasma propofol concentration was assessed. Propofol TCI system performance was analyzed in terms of error size, bias, and divergence. Data on plasma propofol concentrations were analyzed, and population pharmacokinetic parameters of propofol were fitted by NONMEM software. RESULTS In the CTP C group, measured concentrations of propofol were much higher than those of predictive concentrations, with significantly higher overshoots compared to CTP A patients. Overall, TCI system performance was significantly lower in CTP C patients. Linear regression equations of Cm vs. Cp and a regression model of pharmacokinetics were obtained. CONCLUSIONS Propofol TCI device performance with Marsh parameters was clinically acceptable in CTP A patients but may not be suitable for patients with severe hepatic impairment.


Asunto(s)
Insuficiencia Hepática/metabolismo , Propofol/administración & dosificación , Propofol/farmacocinética , Adulto , Anestésicos Intravenosos/administración & dosificación , Anestésicos Intravenosos/farmacocinética , Pueblo Asiatico , China , Estudios de Cohortes , Femenino , Insuficiencia Hepática/sangre , Humanos , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Propofol/sangre
19.
Free Radic Biol Med ; 108: 542-553, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28427999

RESUMEN

BACKGROUND: Postoperative acute lung injury (ALI) is a severe complication after liver transplantation, which severely affects postoperative patients' survival. The underlying mechanism is largely unknown and effective treatment limited. We explored the role of serpin protease inhibitor B1 (SERPINB1), a potent inhibitor of neutrophil serine proteases, in ALI in liver transplantation and its interplay with signal transducer and activator of transcription 3 (STAT3) and heme oxygenase-1 (HO-1). METHODS: Sprague-Dawley rats underwent orthotopic autologous liver transplantation (OALT) were treated with recombinant SB1 (rSB1) in the absence or presence of STAT3 specific inhibitor, WP1066. Then SB1-siRNA was used to knockdown endogenous SERPINB1. Also, alveolar epithelial cells RLE-6TN and BEAS-2B were exposed to TNF-α without or with SERPINB1 and the roles of STAT3 and HO-1 were examined by respective gene knockdown. Finally, rats were treated with ERK1/2 inhibitor U0126, p38 MAPK inhibitor SB20358, or JNK inhibitor SP600125 after rSB1 pretreatment and then subjected to OALT. RESULTS: OALT resulted in increased pulmonary inflammation and oxidative stress, accompanied by severe lung injury that was coincident with increased pulmonary SERPINB1, HO-1, and STAT3. SERPINB1 gene knockdown increased post-OALT lung injury and pulmonary inflammation. rSB1 administration dose-dependently reduced post-OALT lung injury and decreased pulmonary inflammation and oxidative stress with concomitant enhanced HO-1 and STAT3 protein expression. These protective effects of SERPINB1 were abolished by STAT3 inhibition. Similarly, in RLE-6TN cells and BEAS-2B cells, TNF-α induced cell injury and increased HO-1 and STAT3. SERPINB1 further increased HO-1 and STAT3 protein expression and attenuated TNF-α-induced cellular oxidative stress, apoptotic cells, and mitochondria damage, which were cancelled by STAT3 or HO-1 gene knockdown. Furthermore, these SERPINB1-mediated STAT3/HO-1 activation and pulmonary protective effects were abolished by inhibition of ERK1/2 but not p38 MAPK or JNK. CONCLUSIONS: SERPINB1 decreased inflammation, ameliorated oxidative stress in the lung, and attenuated ALI in rats with OALT by activating HO-1 and it does so through STAT3 and it does so by activating ERK1/2.


Asunto(s)
Trasplante de Hígado , Neutrófilos/inmunología , Serpinas/metabolismo , Lesión Pulmonar Aguda/etiología , Animales , Células Cultivadas , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Complicaciones Posoperatorias , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Factor de Transcripción STAT3/metabolismo , Serpinas/genética , Transducción de Señal
20.
Oxid Med Cell Longev ; 2016: 3919627, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27656261

RESUMEN

Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI) and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R) after high (25 mM) or low (5.5 mM) glucose culture. Cell viability, reactive oxygen species (ROS), and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC) or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...