Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-445523

RESUMEN

A major challenge to end the pandemic caused by SARS-CoV-2 is to develop a broadly protective vaccine. As the key immunogen, the spike protein is frequently mutated with conserved epitopes shielded by glycans. Here, we reveal that spike glycosylation has site-differential effects on viral infectivity and lung epithelial cells generate spike with more infective glycoforms. Compared to the fully glycosylated spike, immunization of spike protein with N-glycans trimmed to the monoglycosylated state (Smg) elicits stronger immune responses and better protection for hACE2 transgenic mice against variants of concern. In addition, a broadly neutralizing monoclonal antibody was identified from the Smg immunized mice, demonstrating that removal of glycan shields to better expose the conserved sequences is an effective and simple approach to broad-spectrum vaccine development. One-Sentence SummaryRemoving glycan shields to expose conserved epitopes is an effective approach to develop a broad-spectrum SARS-CoV-2 vaccine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...