Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Allergy ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308490

RESUMEN

The skin microbiome is an extensive community of bacteria, fungi, mites, viruses and archaea colonizing the skin. Fluctuations in the composition of the skin microbiome have been observed in atopic dermatitis (AD) and food allergy (FA), particularly in early life, established disease, and associated with therapeutics. However, AD is a multifactorial disease characterized by skin barrier aberrations modulated by genetics, immunology, and environmental influences, thus the skin microbiome is not the sole feature of this disease. Future research should focus on mechanistic understanding of how early-life skin microbial shifts may influence AD and FA onset, to guide potential early intervention strategies or as microbial biomarkers to identify high-risk infants who may benefit from possible microbiome-based biotherapeutic strategies. Harnessing skin microbes as AD biotherapeutics is an emerging field, but more work is needed to investigate whether this approach can lead to sustained clinical responses.

2.
Nat Microbiol ; 8(5): 973-985, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997797

RESUMEN

Human blood is conventionally considered sterile but recent studies suggest the presence of a blood microbiome in healthy individuals. Here we characterized the DNA signatures of microbes in the blood of 9,770 healthy individuals using sequencing data from multiple cohorts. After filtering for contaminants, we identified 117 microbial species in blood, some of which had DNA signatures of microbial replication. They were primarily commensals associated with the gut (n = 40), mouth (n = 32) and genitourinary tract (n = 18), and were distinct from pathogens detected in hospital blood cultures. No species were detected in 84% of individuals, while the remainder only had a median of one species. Less than 5% of individuals shared the same species, no co-occurrence patterns between different species were observed and no associations between host phenotypes and microbes were found. Overall, these results do not support the hypothesis of a consistent core microbiome endogenous to human blood. Rather, our findings support the transient and sporadic translocation of commensal microbes from other body sites into the bloodstream.


Asunto(s)
Microbiota , Humanos , Microbiota/genética , Boca , Simbiosis , ADN
3.
Nat Commun ; 13(1): 6044, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229545

RESUMEN

Despite extensive efforts to address it, the vastness of uncharacterized 'dark matter' microbial genetic diversity can impact short-read sequencing based metagenomic studies. Population-specific biases in genomic reference databases can further compound this problem. Leveraging advances in hybrid assembly (using short and long reads) and Hi-C technologies in a cross-sectional survey, we deeply characterized 109 gut microbiomes from three ethnicities in Singapore to comprehensively reconstruct 4497 medium and high-quality metagenome assembled genomes, 1708 of which were missing in short-read only analysis and with >28× N50 improvement. Species-level clustering identified 70 (>10% of total) novel gut species out of 685, improved reference genomes for 363 species (53% of total), and discovered 3413 strains unique to these populations. Among the top 10 most abundant gut bacteria in our study, one of the species and >80% of strains were unrepresented in existing databases. Annotation of biosynthetic gene clusters (BGCs) uncovered more than 27,000 BGCs with a large fraction (36-88%) unrepresented in current databases, and with several unique clusters predicted to produce bacteriocins that could significantly alter microbiome community structure. These results reveal significant uncharacterized gut microbial diversity in Southeast Asian populations and highlight the utility of hybrid metagenomic references for bioprospecting and disease-focused studies.


Asunto(s)
Bacteriocinas , Microbiota , Pueblo Asiatico/genética , Bacteriocinas/genética , Estudios Transversales , Genoma Humano , Humanos , Metagenoma/genética , Metagenómica/métodos , Microbiota/genética
4.
J Allergy Clin Immunol ; 150(4): 894-908, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35318044

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is a common chronic skin condition in children (15-20%) that can significantly impair their quality of life. As a result of its relapsing nature and enrichment of Staphylococcus aureus during flares, clinical management can include eradicating S aureus from the skin of children; however, this does not extend to their healthy caregivers, who are potential reservoirs. OBJECTIVE: Our aim was to understand skin microbiome sharing and microbial features in children with AD and their healthy adult caregivers. METHODS: We utilized whole-metagenome profiling at 4 body sites (volar forearm, antecubital fossae, cheeks, and lesions) in combination with sequencing of S aureus isolates to characterize a cohort of children with AD and their healthy caregivers (n = 30 families) compared to matched pairs from control households (n = 30 families). RESULTS: Metagenomic analysis revealed distinct microbiome configurations in the nonlesional skin of AD children and their healthy caregivers versus controls, which were sufficient to accurately predict case-control status (area under the receiver operating characteristic curve > 0.8). These differences were accompanied by significant microbiome similarity between children and their caregivers, indicating that microbiome sharing may play a role in recurrent disease flares. Whole-genome comparisons with high-quality S aureus isolate genomes (n = 55) confirmed significant strain sharing between AD children and their caregivers and AD-specific enrichment of strains expressing enterotoxins Q and K/K2. CONCLUSION: Our results highlight the distinctive skin microbiome features of healthy caregivers for children with AD and support their inclusion in strategies for the treatment of recurrent pediatric AD.


Asunto(s)
Dermatitis Atópica , Microbiota , Adulto , Cuidadores , Niño , Dermatitis Atópica/patología , Enterotoxinas , Humanos , Recurrencia Local de Neoplasia , Calidad de Vida , Piel/patología , Staphylococcus aureus
5.
STAR Protoc ; 3(1): 101145, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35169715

RESUMEN

LUTIs (Long Undecoded Transcript Isoforms) are 5'-extended and poorly translated mRNAs that can downregulate transcription from promoters more proximal to a gene's coding sequence (CDS). In this protocol, polyA RNA is extracted from budding yeast cells undergoing highly synchronized meiosis. Using a combination of long-read direct RNA sequencing and transcript leader sequencing (TL-seq), meiosis-specific LUTIs are systematically identified. Following identification, TL-seq is used to quantify the abundance of both LUTI and the more canonical gene-proximal (PROX) transcripts. For complete details on the use and execution of this protocol, please refer to Tresenrider et al. (2021).


Asunto(s)
Saccharomycetales , Isoformas de Proteínas/genética , ARN , ARN Mensajero/genética , Saccharomycetales/genética , Análisis de Secuencia de ARN/métodos
6.
Mol Cell ; 81(10): 2231-2245.e11, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33826921

RESUMEN

Long undecoded transcript isoforms (LUTIs) represent a class of non-canonical mRNAs that downregulate gene expression through the combined act of transcriptional and translational repression. While single gene studies revealed important aspects of LUTI-based repression, how these features affect gene regulation on a global scale is unknown. Using transcript leader and direct RNA sequencing, here, we identify 74 LUTI candidates that are specifically induced in meiotic prophase. Translational repression of these candidates appears to be ubiquitous and is dependent on upstream open reading frames. However, LUTI-based transcriptional repression is variable. In only 50% of the cases, LUTI transcription causes downregulation of the protein-coding transcript isoform. Higher LUTI expression, enrichment of histone 3 lysine 36 trimethylation, and changes in nucleosome position are the strongest predictors of LUTI-based transcriptional repression. We conclude that LUTIs downregulate gene expression in a manner that integrates translational repression, chromatin state changes, and the magnitude of LUTI expression.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genómica , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Genes Reporteros , Meiosis/genética , Secuenciación de Nanoporos , Nucleosomas/metabolismo , Sistemas de Lectura Abierta/genética , Regiones Promotoras Genéticas/genética , Profase/genética , Biosíntesis de Proteínas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Cell Rep ; 34(3): 108643, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33472063

RESUMEN

Transcription through noncoding regions of the genome is pervasive. How these transcription events regulate gene expression remains poorly understood. Here, we report that, in S. cerevisiae, the levels of transcription through a noncoding region, IRT2, located upstream in the promoter of the inducer of meiosis, IME1, regulate opposing chromatin and transcription states. At low levels, the act of IRT2 transcription promotes histone exchange, delivering acetylated histone H3 lysine 56 to chromatin locally. The subsequent open chromatin state directs transcription factor recruitment and induces downstream transcription to repress the IME1 promoter and meiotic entry. Conversely, increasing transcription turns IRT2 into a repressor by promoting transcription-coupled chromatin assembly. The two opposing functions of IRT2 transcription shape a regulatory circuit, which ensures a robust cell-type-specific control of IME1 expression and yeast meiosis. Our data illustrate how intergenic transcription levels are key to controlling local chromatin state, gene expression, and cell fate outcomes.


Asunto(s)
ARN no Traducido/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
9.
Genome Biol ; 22(1): 34, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446241

RESUMEN

BACKGROUND: The start and end sites of messenger RNAs (TSSs and TESs) are highly regulated, often in a cell-type-specific manner. Yet the contribution of transcript diversity in regulating gene expression remains largely elusive. We perform an integrative analysis of multiple highly synchronized cell-fate transitions and quantitative genomic techniques in Saccharomyces cerevisiae to identify regulatory functions associated with transcribing alternative isoforms. RESULTS: Cell-fate transitions feature widespread elevated expression of alternative TSS and, to a lesser degree, TES usage. These dynamically regulated alternative TSSs are located mostly upstream of canonical TSSs, but also within gene bodies possibly encoding for protein isoforms. Increased upstream alternative TSS usage is linked to various effects on canonical TSS levels, which range from co-activation to repression. We identified two key features linked to these outcomes: an interplay between alternative and canonical promoter strengths, and distance between alternative and canonical TSSs. These two regulatory properties give a plausible explanation of how locally transcribed alternative TSSs control gene transcription. Additionally, we find that specific chromatin modifiers Set2, Set3, and FACT play an important role in mediating gene repression via alternative TSSs, further supporting that the act of upstream transcription drives the local changes in gene transcription. CONCLUSIONS: The integrative analysis of multiple cell-fate transitions suggests the presence of a regulatory control system of alternative TSSs that is important for dynamic tuning of gene expression. Our work provides a framework for understanding how TSS heterogeneity governs eukaryotic gene expression, particularly during cell-fate changes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Cromatina , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , ARN Mensajero , Factores de Transcripción , Transcriptoma
10.
Mol Cell ; 72(6): 942-954.e7, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30576656

RESUMEN

Many active eukaryotic gene promoters exhibit divergent noncoding transcription, but the mechanisms restricting expression of these transcripts are not well understood. Here, we demonstrate how a sequence-specific transcription factor represses divergent noncoding transcription at highly expressed genes in yeast. We find that depletion of the transcription factor Rap1 induces noncoding transcription in a large fraction of Rap1-regulated gene promoters. Specifically, Rap1 prevents transcription initiation at cryptic promoters near its binding sites, which is uncoupled from transcription regulation in the protein-coding direction. We further provide evidence that Rap1 acts independently of previously described chromatin-based mechanisms to repress cryptic or divergent transcription. Finally, we show that divergent transcription in the absence of Rap1 is elicited by the RSC chromatin remodeler. We propose that a sequence-specific transcription factor limits access of basal transcription machinery to regulatory elements and adjacent sequences that act as divergent cryptic promoters, thereby providing directionality toward productive transcription.


Asunto(s)
Regulación Fúngica de la Expresión Génica , ARN de Hongos/metabolismo , ARN no Traducido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Sitios de Unión , Ensamble y Desensamble de Cromatina , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN de Hongos/genética , ARN no Traducido/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/genética
11.
Elife ; 62017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28906248

RESUMEN

Cell differentiation programs require dynamic regulation of gene expression. During meiotic prophase in Saccharomyces cerevisiae, expression of the kinetochore complex subunit Ndc80 is downregulated by a 5' extended long undecoded NDC80 transcript isoform. Here we demonstrate a transcriptional interference mechanism that is responsible for inhibiting expression of the coding NDC80 mRNA isoform. Transcription from a distal NDC80 promoter directs Set1-dependent histone H3K4 dimethylation and Set2-dependent H3K36 trimethylation to establish a repressive chromatin state in the downstream canonical NDC80 promoter. As a consequence, NDC80 expression is repressed during meiotic prophase. The transcriptional mechanism described here is rapidly reversible, adaptable to fine-tune gene expression, and relies on Set2 and the Set3 histone deacetylase complex. Thus, expression of a 5' extended mRNA isoform causes transcriptional interference at the downstream promoter. We demonstrate that this is an effective mechanism to promote dynamic changes in gene expression during cell differentiation.


Asunto(s)
Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Meiosis , Proteínas Nucleares/biosíntesis , Isoformas de ARN/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/fisiología , Transcripción Genética , Cinetocoros/metabolismo , Regiones Promotoras Genéticas
12.
Elife ; 62017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28906249

RESUMEN

Differentiation programs such as meiosis depend on extensive gene regulation to mediate cellular morphogenesis. Meiosis requires transient removal of the outer kinetochore, the complex that connects microtubules to chromosomes. How the meiotic gene expression program temporally restricts kinetochore function is unknown. We discovered that in budding yeast, kinetochore inactivation occurs by reducing the abundance of a limiting subunit, Ndc80. Furthermore, we uncovered an integrated mechanism that acts at the transcriptional and translational level to repress NDC80 expression. Central to this mechanism is the developmentally controlled transcription of an alternate NDC80 mRNA isoform, which itself cannot produce protein due to regulatory upstream ORFs in its extended 5' leader. Instead, transcription of this isoform represses the canonical NDC80 mRNA expression in cis, thereby inhibiting Ndc80 protein synthesis. This model of gene regulation raises the intriguing notion that transcription of an mRNA, despite carrying a canonical coding sequence, can directly cause gene repression.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Cinetocoros/metabolismo , Meiosis , Proteínas Nucleares/biosíntesis , Isoformas de ARN/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/fisiología , Proteínas Nucleares/genética , Biosíntesis de Proteínas , Isoformas de ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
13.
G3 (Bethesda) ; 6(11): 3553-3560, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27605516

RESUMEN

Yeast cells enter and undergo gametogenesis relatively asynchronously, making it technically challenging to perform stage-specific genomic and biochemical analyses. Cell-to-cell variation in the expression of the master regulator of entry into sporulation, IME1, has been implicated to be the underlying cause of asynchronous sporulation. Here, we find that timing of IME1 expression is of critical importance for inducing cells to undergo sporulation synchronously. When we force expression of IME1 from an inducible promoter in cells incubated in sporulation medium for 2 hr, the vast majority of cells exhibit synchrony during premeiotic DNA replication and meiotic divisions. Inducing IME1 expression too early or too late affects the synchrony of sporulation. Surprisingly, our approach for synchronous sporulation does not require growth in acetate-containing medium, but can be achieved in cells grown in rich medium until saturation. Our system requires solely IME1, because the expression of the N6-methyladenosine methyltransferase IME4, another key regulator of early sporulation, is controlled by IME1 itself. The approach described here can be combined easily with other stage-specific synchronization methods, and thereby applied to study specific stages of sporulation, or the complete sporulation program.

14.
J Cell Biol ; 208(6): 821-38, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25753039

RESUMEN

Intercellular junctions are crucial for mechanotransduction, but whether tight junctions contribute to the regulation of cell-cell tension and adherens junctions is unknown. Here, we demonstrate that the tight junction protein ZO-1 regulates tension acting on VE-cadherin-based adherens junctions, cell migration, and barrier formation of primary endothelial cells, as well as angiogenesis in vitro and in vivo. ZO-1 depletion led to tight junction disruption, redistribution of active myosin II from junctions to stress fibers, reduced tension on VE-cadherin and loss of junctional mechanotransducers such as vinculin and PAK2, and induced vinculin dissociation from the α-catenin-VE-cadherin complex. Claudin-5 depletion only mimicked ZO-1 effects on barrier formation, whereas the effects on mechanotransducers were rescued by inhibition of ROCK and phenocopied by JAM-A, JACOP, or p114RhoGEF down-regulation. ZO-1 was required for junctional recruitment of JACOP, which, in turn, recruited p114RhoGEF. ZO-1 is thus a central regulator of VE-cadherin-dependent endothelial junctions that orchestrates the spatial actomyosin organization, tuning cell-cell tension, migration, angiogenesis, and barrier formation.


Asunto(s)
Uniones Adherentes/metabolismo , Permeabilidad Capilar , Células Endoteliales/fisiología , Neovascularización Fisiológica , Proteína de la Zonula Occludens-1/fisiología , Actomiosina/metabolismo , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Células Cultivadas , Claudina-5/metabolismo , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Humanos , Mecanotransducción Celular , Ratones Endogámicos C57BL , Miosinas/metabolismo , Transporte de Proteínas , Receptores de Superficie Celular/metabolismo , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...