Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Alzheimers Dis ; 99(4): 1317-1331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38788066

RESUMEN

Background: Emerging diagnostic modalities suggest that miRNA profiles within extracellular vesicles (EVs) isolated from peripheral blood specimens may provide a non-invasive diagnostic alternative for dementia and neurodegenerative disorders. Given that EVs confer a protective environment against miRNA enzymatic degradation, the miRNAs enriched in the EV fraction of blood samples could serve as more stable and clinically relevant biomarkers compared to those obtained from serum. Objective: To compare miRNAs isolated from EVs versus serum in blood taken from Alzheimer's disease (AD) dementia patients and control cohorts. Methods: We compared 25 AD patients to 34 individuals who exhibited no cognitive impairments (NCI). Subjects were Singapore residents with Chinese heritage. miRNAs purified from serum versus blood-derived EVs were analyzed for associations with AD dementia and medial temporal atrophy detected by magnetic resonance imaging. Results: Compared to serum-miRNAs, we identified almost twice as many EV-miRNAs associated with AD dementia, and they also correlated more significantly with medial temporal atrophy, a neuroimaging marker of AD-brain pathology. We further developed combination panels of serum-miRNAs and EV-miRNAs with improved performance in identifying AD dementia. Dominant in both panels was miRNA-1290. Conclusions: This data indicates that miRNA profiling from EVs offers diagnostic superiority. This underscores the role of EVs as vectors harboring prognostic biomarkers for neurodegenerative disorders and suggests their potential in yielding novel biomarkers for AD diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Biomarcadores , Vesículas Extracelulares , MicroARNs , Lóbulo Temporal , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/sangre , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroARNs/sangre , MicroARNs/genética , Masculino , Femenino , Anciano , Biomarcadores/sangre , Lóbulo Temporal/patología , Lóbulo Temporal/diagnóstico por imagen , Imagen por Resonancia Magnética , Persona de Mediana Edad , Anciano de 80 o más Años
2.
Ageing Res Rev ; 95: 102247, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38417710

RESUMEN

Age-associated cerebral small vessel disease (CSVD) represents a clinically heterogenous condition, arising from diverse microvascular mechanisms. These lead to chronic cerebrovascular dysfunction and carry a substantial risk of subsequent stroke and vascular cognitive impairment in aging populations. Owing to advances in neuroimaging, in vivo visualization of cerebral vasculature abnormities and detection of CSVD, including lacunes, microinfarcts, microbleeds and white matter lesions, is now possible, but remains a resource-, skills- and time-intensive approach. As a result, there has been a recent proliferation of blood-based biomarker studies for CSVD aimed at developing accessible screening tools for early detection and risk stratification. However, a good understanding of the pathophysiological processes underpinning CSVD is needed to identify and assess clinically useful biomarkers. Here, we provide an overview of processes associated with CSVD pathogenesis, including endothelial injury and dysfunction, neuroinflammation, oxidative stress, perivascular neuronal damage as well as cardiovascular dysfunction. Then, we review clinical studies of the key biomolecules involved in the aforementioned processes. Lastly, we outline future trends and directions for CSVD biomarker discovery and clinical validation.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Disfunción Cognitiva , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Neuroimagen/efectos adversos , Biomarcadores , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética
3.
Biomolecules ; 14(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38254675

RESUMEN

In the brain, the extracellular matrix (ECM) composition shapes the neuronal microenvironment and can undergo substantial changes with cerebral pathology. Brevican is integral to the formation of the ECM's neuroprotective perineuronal nets (PNNs). Decreased brevican levels were reported in vascular dementia (VaD) but not in Alzheimer's disease (AD). However, the status of brevican in clinical cohorts with high concomitance of AD pathological burden and cerebrovascular disease (CeVD) is unclear. In this study, 32 non-cognitively impaired (NCI), 97 cognitively impaired no dementia (CIND), 46 AD, and 23 VaD participants recruited from memory clinics based in Singapore underwent neuropsychological and neuroimaging assessments, together with measurements of serum brevican. Association analyses were performed between serum brevican and neuroimaging measures of CeVDs, including white matter hyperintensities (WMHs), lacunes, cortical infarcts, and cerebral microbleeds. Using an aggregated score for CeVD burden, only CIND participants showed lower brevican levels with higher CeVD compared to those with lower CeVD burden (p = 0.006). Among the CeVD subtypes assessed, only elevated WMH burden was associated with lower brevican levels (OR = 2.7; 95% CI = 1.3-5.5). Our findings suggest that brevican deficits may play a role in early cerebrovascular damage in participants at risk of developing dementia.


Asunto(s)
Enfermedad de Alzheimer , Brevicano , Trastornos Cerebrovasculares , Demencia Vascular , Anciano , Humanos , Biomarcadores , Encéfalo , Brevicano/sangre , Brevicano/química , Trastornos Cerebrovasculares/diagnóstico , Demencia Vascular/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA